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ABSTRACT 
 
Visuo is an implemented Python program 

that models visual reasoning. It takes as input a 
description of a scene in words (e.g., “small 
dog on a sunny street”) and produces estimates 
of the quantitative magnitudes of the qualita-
tive input (e.g., the size of the dog and the 
brightness of the street). We claim that reason-
ers transfer quantitative knowledge to new 
concepts from distributions of familiar con-
cepts in memory. We also claim that visuospa-
tial magnitudes should be stored as distribu-
tions over fuzzy sets. We show that Visuo suc-
cessfully adapts knowledge to new concepts. 

 
INTRODUCTION 

 
In this paper we apply analogical reason-

ing to an aspect of visual imagination. Human 
beings can easily imagine what a “big sundae” 
looks like. The creation of this visualization 
requires an enormous amount of information—
much more than the information in the two-
word phrase that triggers it. How do reasoners 
generate this information from an input con-
taining only two symbols? We will show 
how a reasoner could estimate the quantitative 
meaning of qualitative adjectives such as “big” 
and qualitative prepositions such as “beside.”   
For example, if the reasoner is asked visualize 
a “big orca,” exactly how big should that orca 
be?   

We implemented our theory in an opera-
tional Python computer program called Vi-
suo.  The program takes as input a set of labels, 

such as “long rug,” or “big flag over a small 
lawn.”  In a process we call “visuospatial in-
stantiation,” the program outputs symbolic 
scene descriptions that include quantitative 
magnitudes based on input adjectives and pre-
positions (such as “long” or “over”).   It does 
this through analogical reasoning, using indi-
vidual experiences as well as generalized pro-
totypes as sources. 

We will describe our theory of visuospa-
tial instantiation, Visuo (the program written to 
test the theory), and an evaluation. 

Theory Overview. The meanings of ad-
jectives and prepositions in natural language 
are relative to the objects being described. For 
example, a foot “over” a brake pedal is much 
closer than a cloud “over” a lake. We suggest 
that reasoners retrieve and modify appropriate 
memories when possible. For example, if 
asked to visualize a “large raven,” if there are 
descriptions in memory of a large ravens, the 
large raven prototype will be retrieved and 
used for visualization. But when a match is not 
found, the reasoner infers the meaning of the 
adjectives and prepositions by analogy, trans-
ferring from better-known concepts in memo-
ry.     

Our theory includes two phases: the train-
ing phase, when experienced visuospatial sti-
muli are incorporated into memory, and the 
visualization phase, when, given some input to 
visualize, information in memory is used to 
create a description of a new, imagined visual 
scene.  

Reasoners experience visual stimuli in the 
world, and often these stimuli are labeled. For 
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example, a reasoner might see an object asso-
ciated with a label such as “crow.” A different 
stimulus might be labeled as a “large crow,” or 
“small city.”  Suppose a reasoner has expe-
rienced many crows, many of which were la-
beled with different qualitative size descriptors, 
such as “tiny,” “small,” “large,” and “huge.” 
 Let's also suppose the reasoner has expe-
rienced many instances of ravens, which are 
associated with the “raven” label but not with 
qualitative size labels.  When asked to imagine 
a large raven, since the reasoner has not expe-
rienced a raven that was labeled as “large,” it 
must use a meaning of “large” from some other 
concept in memory. According to our theory a 
reasoner in this situation transfers the notion of 
“large” from a semantically-related concept, 
such as “crow,” rather than a less-related con-
cept, such as “city.”  With a notion of “large” 
from a related concept, the reasoner can make 
a reasonable guess as to how large a “large 
raven” would be. This informs the final visua-
lized image description.   

In the training phase, Visuo takes as input 
a file describing visuospatial experiences. Its 
outputs are changes to its memory. In the visu-
alization phase, Visuo takes as input a phrase 
describing what is to be visualized. The output 
is a propositional scene description including 
quantitative magnitudes. 

The theory is both a model of human 
cognition and a contribution to artificial intel-
ligence.  

Training Phase. We focus on three as-
pects of encoding that are relevant to our par-
ticular task of visual imagination: a label, 
attributes, and quantitative values.   

In the training phase each preposition and 
noun in the input is associated with some set 
of attributes (e.g. size, length).  Each attribute 
(associated with each noun and preposition) is 
associated with a single value. The value 

represents the real-world magnitude of that 
attribute.   

 Reasoners add this information to epi-
sodic memory, and then create or modify ap-
propriate parts of semantic memory. 

  Our implementation of the theory (Vi-
suo) takes a file as input for the training phase 
and a text string for the visualization phase.    

The training phase input file contains en-
tries representing quantitative aspects of visual 
scenes. These values are measured in mental 
units rather than more objective metrics such 
as centimeters or kilograms, so a crow that is 
40 centimeters long might get a “size” value of 
“10” in these mental units.  This is based on 
the notion that a person need not know any 
particular culturally invented unit of measure 
to represent visuospatial magnitudes. The spe-
cific values chosen for the mental units are 
irrelevant.  What is important is that they are 
proportionate to invented units up to some 
scale factor and that they are consistently used.  

The parser reads the input file, and trans-
forms each example into an exemplar, which 
contains all the characteristics of the example.   
Additionally, the parser identifiers each word 
as a noun, adjective, or a preposition. 

For example, “large bat” and all exem-
plars created from this phrase acquire the 
attribute size, with an attribute value of 12 (we 
will describe below how these values are not 
stored as exact numbers, but as a distribution 
containing the attribute value’s degrees of 
membership in each fuzzy number set). 

There are two methods the parser uses to 
create exemplars out of the input phrase (see 
Figure 1).  If the input phrase has a preposition 
in it, the first method is used, which parses the 
phrase into two exemplars.  The first exemplar 
is that of the entire phrase, and the second ex-
emplar is one containing only the preposition.  
For example, “[[large bat] above [tree]]” would 

Figure 1. The result of parsing “large bat”, forest, and “[large bat] above forest”. Each node is turned into 
an exemplar. 



 

be parsed into an exemplar “large bat above 
tree,” and also into an exemplar “above.”  The 
first would be an exemplar of how “above” 
relates to a bat and a tree, and the second 
would be a general exemplar of “above” as a 
generic term.  

Noun phrases use a second method.  The 
phrase is parsed with a depth-first recursive 
method, and each segmentation creates a new 
exemplar.  The very first exemplar is created 
from the entire input phrase.  The remaining is 
recursively broken down into sub-phrases, 
where each sub-phrase is either a word, or a 
grouping of words as grouped by square brack-
ets.  If a sub-phrase contains only one word, 
then the parser does not attempt to break it 
down further.  If the sub-phrase contains mul-
tiple words, or bracketed words, then that 
chunk is further broken down.  

For example, the input phrase “[large 
bat]” would produce three exemplars.  Visuo 
would first create an exemplar for “large bat.”  
Since the “large bat” contains more than one 
word, it would further be broken down into an 
exemplar for “large,” then one for “bat.”  Since 
the previous phrase cannot be recursively bro-
ken down further, no more exemplars are 
created for this input phrase.  The process 
above is the same no matter how many 
attributes are associated with a particular name. 

Creation of Exemplars in Episodic 
Memory. Exemplars represent memories of 
objects occurring at a specific place and time 
(Tulving, 1984).  For example, when the rea-
soner takes as input a crow of size “10,” that 
information is stored in an exemplar.   

Distributions of Fuzzy Set Member-
ship. In our theory, agents do not exact-
ly represent perceptual magnitudes. Rather, the 
memory representations account for perceptual 
uncertainty and vagueness. Spatial receptors in 
the retina and the visual system of the brain 
have receptive regions that have varying sensi-
tivity to different attributes, such as the differ-
ent orientations of an edge (Hubel & Wiesel, 
1965).  In fact, detectors have been found to 
pick up even higher order visual concepts such 
as buildings and faces (Kreiman, Koch, & 

Fried, 2000).  Also, Behavioral data show that 
people represent things with graded member-
ship to categories in general (Hampton, 2007), 
so we conjecture that higher-level perceptual 
detectors in the brain also represent variable 
category membership as a function of the firing 
rates of neural populations.  In our theory, 
fuzzy set memberships represent these diffe-
rential firing rates.  In fuzzy set theory, the 
membership of an instance in a given set is 
described with a fuzzy membership value rang-
ing from 0 (clearly not in the set) to 1 (clearly a 
member of the set).    

For an example relevant to our task, an 
input of “10” could be representing a magni-
tude in the real world of, say, 5’8”, with vary-
ing degrees of certainty and vagueness. In this 
example, the input number 10 becomes a fuzzy 
number (Dubois & Prade, 1987).  As opposed 
to ‘crisp’ numbers, fuzzy numbers are numbers 
that have a fuzzy range of values.  Each in it-
self is a fuzzy set.  An input number is a mem-
ber of all fuzzy number sets to some degree, 
represented by a number between 0 and 1.  An 
input of “10,” for example, would have a 1.0 
membership in the fuzzy number 10 and a 
0.6667 membership in the fuzzy number 5.   

Each distribution has a slot for all of the 
fifteen points on a logarithmic mental unit 
scale (0, 2, 5, 10, 20, 35, 65, 100, 160, 250, 
400, 600, 900, 1350, 1800)1

    For example, suppose the reasoner 
views a crow of size 10 (in mental units.) The 
distribution to represent this would contain the 
following information:    

. It is represented 
logarithmically because there is evidence 
showing that people  naturally (without educa-
tional intervention) represent distances loga-
rithmically (Dehaene, Izard, Spelke, & Pica, 
2008).  The distribution itself is a list of num-
bers representing the membership of the crisp 
input value in all of the fuzzy number sets. 
These fuzzy numbers have overlapping ranges, 
just as spatial detectors do. 

(0.0, 0.0, .67, 1.00, .33, 0.0, ...) [crow1 size] 
                                                 
1 Only approximates the logarithmic scale; 
Also, zero is not in the logarithmic scale. 



 

   Each number in the distribution is a mem-
bership of the crisp input number (in this case 
“10”) for each point on the mental unit line (0, 
2, 5, 10, 20, 35,...). This process of turning a 
crisp number into fuzzy memberships is called 
“fuzzification.” Each of these distributions is 
associated with an attribute, and also with ei-
ther a preposition or a noun. A particular noun 
phrase can have multiple exemplars, each with 
its own distribution—one for each attribute.   

We cannot know exactly what numbers 
are on this scale nor how real world magni-
tudes translate to these mental units.  Thus the 
specific numbers we use in the program are 
arbitrary, but we believe that a different set of 
logarithmically-organized numbers would not 
change the program’s behavior in a way rele-
vant to our hypotheses. The details of how Vi-
suo executes fuzzification can be found in 
Gagné and Davies (under review). 

Exemplars. In this theory, each exem-
plar contains some number of distributions, as 
described above. The example of [[large crow] 
over [thick tree]] is parsed.  Reasoners will 
create exemplars for each of the following 
nodes: large crow, large, crow, large crow over 
thick tree, over, thick tree, thick, and tree. Each 
of these exemplars will have one distribution 
for every attribute that is associated with it in 
the input.  

Prototypes in Semantic Memory. In 
our theory, semantic memory consists of proto-
types. Inspired by Rosch (1973), they are 
memories of general concepts of things, ab-
stracted from specific instances. They represent 
the family resemblance of a category. For 
quantitative attributes this translates to mean 
values. We call this part of memory “semantic” 
because it is representing the meaning of 
words. The first time Visuo experiences a 
crow, it creates a prototype for crow.  For each 
subsequent experience of a crow, instead of 
creating an additional prototype of crow, it 
modifies the existing one with the new exem-
plar 

Suppose the reasoner experiences 
([large crow] size=10). The reasoner creates a 
distribution for size and associates it with the 

prototype of “large crow,” containing all of the 
information from its exemplar, plus a count n 
of the number of examples experienced so far 
with this label (for the first instance of “large 
crow,” the number of instances seen would be, 
of course, one). As the crisp input number is 
stored as a distribution over fuzzy number sets, 
it differs from more traditional prototypes, 
which store exact means.    

Upon experiencing another large crow, 
each fuzzy membership number  in the 
distribution is averaged based on  

 

where  is the previous value,  is the 
new value.  Following the calculation of , 
the number n is increased by 1. The reasoner 
incorporates each new experience of the same 
category into the prototype. For each point in 
the mental unit scale, the prototype represents 
the mean value of the memberships all exem-
plars for the corresponding fuzzy number.  In 
this way, the prototype represents an average 
of all experiences. 

Like exemplars, prototypes also keep 
separate records for each attribute, containing a 
distribution and a count of experienced exam-
ples.  This also happens for attributes that 
might be thought to be irrelevant to an adjec-
tive, such as “large.” For example, an expe-
rienced “large crow” might have a “size” and a 
“brightness” (indicating how dark it is.) 
Though one would not think that the largeness 
of the crow describes the brightness, the proto-
type stores it. This could allow Visuo to pick 
up on correlations in the environment.  

 Note that there is also a prototype 
created for “large.” This is a representation of 
largeness that is independent of what objects 
have actually been seen (e.g., crows, tuna 
sandwiches). It is the reasoner's generic repre-
sentation of “large.”   

Similarly prototypes are created or 
modified for each distribution in the exemplar. 

 
 



 

VISUALIZATION PHASE 
 

Above we described the training phase, 
how a reasoner collects and represents observa-
tions conducted before the task of visualization 
starts. The specific task we are describing in 
this paper is to estimate a quantitative magni-
tude from a qualitative (verbal) stimulus. The 
kinds of input our theory endeavors to under-
stand (in both the training and visualization 
phases) includes inputs such as: [raven], 
[bright [long [large raven]]], and [[bright [long 
[large raven]]] above [tall tree]].  

These examples are instances of a gene-
ralized recursive grammar:    

NP -> [N] 
NP -> [Adj NP] 
S  -> [NP (Prep NP)] 

where S is an input string (simplified sen-
tence), N is a noun, NP is a noun phrase, Adj is 
an adjective, and Prep is a preposition. 

For example, if the reasoner is asked to 
imagine a “large crow” (the “visualization sti-
mulus”), how can the reasoner use memories of 
crows to effectively guess how large this im-
agined raven should actually be? If asked to 
imagine a “large raven,” how can the reasoner 
use memories of crows to make an estimate of 
the raven’s actual size? This is the task of the 
visualization phase.   

We conjecture that using context affects 
the outputs, making output more psychologi-
cally realistic. By context we mean both the 
context of the other things in memory (e.g., the 
crows and ravens you have seen before), as 
well as the context in the visualization stimulus 
(i.e., the other words in the input).    

At a high level, the reasoner takes the 
visualization stimulus and tries to find a match-
ing prototype in semantic memory. If it is 
found, then the information in that prototype is 
de-fuzzified and output.  This is the trivial 
case.  

The more interesting case is when there 
is not an exact match found in semantic memo-
ry. When this happens, the reasoner breaks the 
visualization stimulus into smaller pieces, re-

cursively, until either matches are found, or the 
input cannot be further broken down.    

For example, suppose the visualization 
stimulus is “[large raven] above tree.”  The 
reasoner will search its semantic memory for 
prototypes describing the entire stimu-
lus [[large raven] above [tree]]. Suppose the 
reasoner has not experienced a scene labeled 
this way. The reasoner parses the input and 
then searches for prototypes describing the first 
node [large raven].  If that fails, the reasoner 
searches for prototypes for “large” and for “ra-
ven.”    

Specifically, the reasoner searches for 
the distribution of “large” that most closely 
matches “raven.” For example, suppose the 
only prototypes for “large” in semantic memo-
ry are for crows, cities, and the generic concept 
of “large.” The reasoner will use a distribution 
of “large” for the most semantically-related 
concept. In this case, it would be “large crow.” 
The information in the “large crow” distribu-
tion is transferred and adapted to the new 
“large raven” distribution. With the creation of 
this new distribution, the reasoner now has an 
exact match for “large crow,” which it has 
been searching for.   

This is conceptually combined with 
“above” and “tree,” finally creating a new ex-
emplar and prototype for [[large raven] above 
[tree]]. With this final prototype created, the 
reasoner can de-fuzzify the prototype (as in the 
trivial case), and the reasoner outputs a number 
for how large the large raven is, and how far 
above the tree the large raven is.    

We will now describe the processes of 
retrieval, conceptual combination, transfer, and 
de-fuzzification.   

Retrieval: Searching for Prototypes 
in Semantic Memory. The system depth-first 
searches the parse tree, looking for matches for 
each node in semantic memory. If the node 
represents a phrase containing a compound 
term (e.g., “large raven,” as opposed to a single 
term, such as “raven”) then Visuo will only 
match to prototypes in memory for which there 
is an exact match on the that phrase.  If the 
compound term is not found, then the children 



 

nodes are searched.  This process continues 
until the terms are found.  At this point, Visuo 
combines the prototypes through conceptual 
combination, creating a new prototype for 
“large raven,” which might get further com-
bined with other parent nodes until there is a 
prototype created for the visualization stimu-
lus.  

Conceptual Combination. Conceptual 
combination is the process of combining ideas 
together to create a new idea.  There are two 
methods used in this paper, one for the merger 
of an adjective with a noun phrase, and one for 
combining two noun phrases with a preposi-
tion. 

An adjective is combined with a noun 
phrase by disambiguating the sense of the ad-
jective, understanding how the adjective mod-
ifies similar concepts through the creation of a 
concept modifier, and finally, merging the ad-
jective and noun such that the relevant proper-
ties are transferred.  Noun phrases are merged 
with a preposition by disambiguating the sense 
of the preposition.   

Word Sense Disambiguation. If Visuo 
is searching for a sense of “large” that is rele-
vant to a “raven”, the first step is to retrieve 
from memory all prototypes that contain the 
word large and pair them with the generic ver-
sion of the prototype (i.e., the prototype that is 
the noun portion).  For instance, if Visuo expe-
riences three different kinds of situations when 
“large” is used (“large tree”, “large crow”, 
“large city”) then those prototypes will be re-
turned.  Although Visuo retrieves the relevant 
constants in linear time, we conjecture that 
since the brain performs many of its tasks in a 
highly paralleled nature, this task is being done 
in parallel and hence in constant time.  

“Raven” is compared to each of the ge-
neric versions of the prototypes (tree, crow, 
city) using the Wu-Palmer similarity measure 
(Wu & Palmer, 1994) as implemented in 
NLTK version (Bird & Loper, 2004) of 
WordNet (Fellbaum, 1998).  The prototypes 
identified to be most similar are selected as the 
specific source prototype (“large crow”) and 
the general source prototype (“crow”).  The 

general target prototype is the noun prototype 
(raven) that is to be combined with the concept 
modifier to create the specific target prototype 
(large raven).  

The process of finding an appropriate 
sense of a preposition is slightly different.  In 
the first step, all of the prototypes of the prepo-
sition in memory are returned as a list.  The 
similarity measure used is the product of the 
Wu-Palmer similarity between the left nouns 
and the Wu-Palmer similarity of the right 
nouns.   The adapted similarity measure allows 
Visuo to recognize that a “bird over forest” is 
more similar to “bat over tree” than it is to 
“clouds over forest”, even though the former 
shares a word in common (forest) and the latter 
does not.  In this example, product similarity is 
calculated by the result of the bat’s similarity 
to bird, multiplied by the result of forest’s si-
milarity to tree.   

Concept Modifier Creation. We can im-
agine that an adjective modifies a noun (or 
noun phrase) in the mind of a reasoner. For 
example, we have an idea of what a dog looks 
like, and when specified that the dog is 
“small,” it changes the concept we have in 
mind.  This allows a reasoner to use adjectives 
to describe new concepts as long as the mean-
ing of the adjective can be abstracted and trans-
ferred from a similar situation.  We hold that 
reasoners have concept modifiers, which are 
created from adjective senses and used to mod-
ify nouns, creating new adjective-noun con-
cepts.  It is the instantiation of the functional 
capabilities of an adjective in a particular con-
text.  For example, a concept modifier created 
from the adjective “large” as it is used for 
“crow” can be applied to “raven” to create a 
concept for “large raven”.  The details of how 
Visuo uses concept modifiers can be found in 
Gagné and Davies (under review). 

 Concept modifiers are implemented in 
Visuo as data structures that are comprised of 
one or more attribute modifiers.  Attribute 
modifiers are data structures that represent how 
each attribute in a noun prototype is modified 
by an adjective prototype such that the noun 
prototype becomes an adjective-noun prototype 



 

(a concept modifier is made of some number of 
attribute modifiers).  For example, if the proto-
type of a raven has two attributes, size and co-
lour_brightness, and Visuo is performing con-
ceptual combination on “large” and “raven”, 
then up to two attribute modifiers will be 
created.  More specifically, there is one 
attribute modifier for each attribute that is 
present in the general source, specific source, 
and general target prototypes.   

 Attribute modifiers contain two distri-
butions, a modifier density and a multiplier.  
The modifier density distribution is a norma-
lized copy of the attribute’s distribution of the 
general source prototype (e.g., “raven”).  The 
multiplier is created by a piece-wise multipli-
cation of the general source prototype by the 
specific source prototype.  More formally, the 
multiplier m is a vector where each element is 
defined as 

 
 

where n is the size of the distributions, Gi is the 
ith element in the general source concept dis-
tribution, and Si is the ith element in the specif-
ic source concept. 

Transfer. In our running example, 
since crows are smaller than ravens, simply 
applying the concept modifier by multiplying 
the attribute modifiers’ multiplier distribution 
by the “raven” attribute distributions would 
result in an inappropriate matching of the 
numbers in the distribution.  In fact, without 
adjusting the distributions, a “large raven” 
could have the distribution of what a “small 
raven” should have, or it could have a distribu-
tion containing nothing (i.e., all zeros). So we 
conjecture that reasoners associate the values 
of the two distributions with the percent of the 
distributions that those values cover.    

Visuo creates a density distribution for 
the modifier values and one for the target pro-
totype, which is a representation of how dense 
the data is at different parts of the distribution. 
For example, a density distribution might tell 
us that most of the data is in the low ranges, 

with very little in the high ranges.  This density 
distribution is stored with the respective 
attribute modifier as the modifier density dis-
tribution.  At this point the multiplier is ready 
to be combined with the target prototype “ra-
ven.”   

Each value in the target distribution is 
multiplied by some percentage of the numbers 
in the multiplier.  This percentage is deter-
mined by matching elements of the target den-
sity distribution to sections of the multiplier 
density distribution.  For example, the first 
number in the target distribution might be mul-
tiplied by the first two, or even the first 2.6 
numbers in the multiplier.  If this percentage 
matching is not done, then large portions of 
distributions end up being unjustifiably multip-
lied by zero.  To be more specific, the new 
attributes are created by the Density Distribu-
tion Product (Gagné & Davies, under review). 

The final concept to create is the root 
concept, which consists of three con-
cepts: “large raven,” “above,” and “tree.”  All 
that is missing for the merger is the concept 
of “above” as it applies to this context.  This is 
found once again by the WordNet’s implemen-
tation of Wu-Palmer similarity measure, as 
described in the section on retrieval.  The 
attribute values of “[large bat] above forest” 
are used to create an exemplar and prototype of 
“above” for the concept [[large raven] above 
tree].  The distribution is copied directly, rather 
than being created by changing a target with a 
multiplier, since there is no target to modify. 

The creation of the complete novel con-
cept is now complete.   

De-fuzzification. Once Visuo has a 
prototype that matches the input, the final step 
is de-fuzzification, which is the process of 
transforming a fuzzy qualitative distribution 
(such as an attribute’s distribution) into a quan-
titative crisp number.  The crisp number N is 
computed by taking a weighted average of the 
distribution as defined by:  

 

 



 

     
where, ui is the membership value in the distri-
bution and  is the value of the fuzzy 
number (e.g., val(35F) = 35).  The denomina-
tor Σ(ui) is used to normalize the result. 

Multiple Attributes. As noted above, 
multiple attributes can be transferred for a sin-
gle specific concept. For example, if one is 
asked to imagine a “large dog,” there is more 
to our imagined dog than simply a size. The 
dog has a colour, a way it holds itself, and sev-
eral other features. Up to this point, this paper 
has primarily only illustrated the generation of 
the estimate for a single attribute, in this case, 
“size.” Note, however, that Visuo will use the 
process described above for every attribute in 
the final prototype. Depending on the informa-
tion in the memory, the imagined “large crow” 
might come with quantitative estimates of 
wingspan, size, brightness, elevation, orienta-
tion, weight, etc., just as a person would. 

 
EVALUATION 

 
To evaluate our theory we tested the Vi-

suo implementation. For input data we used 
those collected from the online game Peeka-
boom (von Ahn, Liu, & Blum, 2006), which 
contains 57,797 images from the web with 
clouds of coordinates attached to labels. For 
example, an image with a cat in it will have 
points in the image associated with the label 
“cat.”   

We analyzed the spatial information of 
the images from the Peekaboom database that 
contained at one of the following labels: cat, 
crow, dog, person, raven, skyscraper, and 
tower.  We used the first 100 instances of each 
concept except for raven and crows, since the 
database only contained 12 and 57 of these 
labels, respectively.  We created input for Vi-
suo from this data by measuring the width-to-
height ratio (which we will call simply “width 
ratio”) of each instance of the labels, where 
width ratio is relative to the height. Width ratio 
 is calculated by 

 

where max(x)  is  the x-coordinate that is most to 
the right of the image,  min(x)  is  the x-
coordinate that is most to the left of the image, 
max(y)  is  the y-coordinate that is most to the 
bottom of the image, and min(y)  is  the y-
coordinate that is closest to the top of the image.  
The ratio is used, since the spatial information in 
the database is only known up to a scale factor.  
By dividing the width by the height, the effects 
of the unknown scale factor are removed, and 
hence, true spatial information can be known. 

In Peekaboom, when one player clicks a 
part of the image to reveal it to his or her part-
ner, it reveals that pixel plus all pixels in a 20 
pixel radius. Therefore the farthest revealed 
point will be 20 pixels away from the click, 
although at times, this reveals pixels that are 
not part of the object. To account for this, we 
used an estimated value of 15, which we found 
to be a good compromise. For demonstration 
purposes, we multiplied each pixel count by 
100 to translate it into mental units.  
Of the instances used, the thinnest 30% are 
labeled as thin (e.g. thin tower), the thickest 
30% are labeled as thick crows, and the 40% in 
between are labeled as medium. The only in-
stances that were not labeled were the ones 
used in the visualization phrase.  For example, 
if visuo is asked to visualize a [thin raven], 
then all the concepts besides the raven would 
be labeled. Furthermore, Visuo should select 
“thin crow” as a source analog because of its 
relative semantic closeness. If the program 
works as our theory predicts, then it should 
guess that a thin raven’s width (width to height 
ratio) is more similar to crows than to the other 
concepts, and even more importantly, the esti-
mates should be close (< 20%) and preferably 
very close (< 10%). 

To evaluate the results, the estimated 
values were compared to the actual values and 
the error  was determined by  

 

where  is the estimated ratio and  actual ra-
tio.   



 

 

As shown in Table 1, the estimates are 
extremely close to the actual value.  The worst 
estimates were of “medium crow” (16.57%) 
and “thick crow” (11.93%), which used “me-
dium raven” and “thick raven” as estimates.  
These estimates are quite reasonable consider-
ing the Peekaboom database only contained 6 
instances of “medium ravens” and 3 instances 
of “thin ravens” to train from.  Increasing the 

number of instances dramatically improves 
results, which can be seen with the width ratio 
prediction for a person.  For all three person 
predictions, the error was 0.8% or less, which 
indicates extremely accurate predictions.  
Overall, the average estimate error is 4.73%, 
indicating that the cognitive model Visuo can 
accurately estimate the quantities of unknown 

Table 1. Comparison between Visuo’s estimated width ratios and the actual width ratios. 

Target Specific  
Prototype 

Source Specific  
Prototype 

Estimated  
Ratio 

Actual 
Ratio % Error 

thin cat thin dog 77.74 80.58 3.59 
medium cat medium dog 112.54 113.41 0.77 

thick cat thick dog 168.10 164.10 2.41 
    Avg. 2.26 

thin crow thin raven 78.49 78.52 0.03 
medium crow medium raven 161.23 136.55 16.57 

thick crow thick raven 252.37 284.37 11.93 
     Avg. 9.51 

thin dog thin cat 72.69 64.27 12.29 
medium dog medium cat 103.42 102.33 1.05 

thick dog thick cat 153.59 163.46 6.22 
    Avg. 6.52 

thin person thin dog 54.67 54.27 0.74 
medium person medium dog 83.65 83.17 0.58 

thick person thick dog 129.42 130.47 0.80 
    Avg. 0.71 

thin raven thin crow 80.75 78.19 3.22 
medium raven medium crow 135.03 147.30 8.69 

thick raven thick crow 226.14 211.27 6.80 
    Avg. 6.24 

thin skyscraper thin tower 44.60 41.75 6.60 
medium skyscraper medium tower 72.83 73.71 1.20 

thick skyscraper thick tower 135.70 137.70 1.46 
    Avg. 3.09 

thin tower thin building 32.50 30.85 5.19 
medium tower medium building 56.64 53.84 5.10 

thick tower thick building 122.69 127.66 3.97 
    Avg. 4.75 

Overall Average    4.73 % 



 

spatial attributes based on the quantities of 
semantically similar concepts. 

 
CONCLUSION 

 
There have been numerous systems built 

that implement analogical visuospatial reason-
ing (e.g., Ferguson & Forbus, 2000), but the 
research on generating visual representations 
has been limited, coming primarily out of 
computer graphics (e.g., “image synthesis” 
Johnson et al., 2006). Though such systems 
often use images from a database, the research 
is not couched in terms of analogy nor case-
based reasoning. 

Our main claims are as follows. First, rea-
soners store quantitative perceptions as mem-
bership distributions across a logarithmic set of 
fuzzy numbers. Second, these perceptions can 
be labeled with linguistic phrases. Third, when 
visualizing, reasoners will retrieve an appropri-
ate prototype from memory, and determine the 
crisp output based on de-fuzzification of that 
prototype. Fourth, when retrieval is impossible, 
reasoners transfer meaning of these descriptors 
and relations from semantically related con-
cepts in the prototype case base.   
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