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Abstract

An incoherent visualization is when aspects of different senses of a word (e.g., the biological

“mouse” vs. the computer “mouse”) are present in the same visualization (e.g., a visualization of

a biological mouse in the same image with a computer tower). We describe and implement a new

model of creating contextual coherence in the visual imagination called Coherencer, based on the

SOILIE model of imagination. We show that Coherencer is able to generate scene descriptions

that are more coherent than SOILIE’s original approach as well as a parallel connectionist algo-

rithm that is considered competitive in the literature on general coherence. We also show that co-

occurrence probabilities are a better association representation than holographic vectors and that

better models of coherence improve the resulting output independent of the association type that

is used. Theoretically, we show that Coherencer is consistent with other models of cognitive gen-

eration. In particular, Coherencer is a similar, but more cognitively plausible model than the C3

model of concept combination created by Costello and Keane (2000). We show that Coherencer is

also consistent with both the modal schematic indices of perceptual symbol systems theory (Barsa-

lou, 1999) and the amodal contextual constraints of Thagard’s (2002) theory of coherence. Finally,

we describe how Coherencer is consistent with contemporary research on the hippocampus, and

we show evidence that the process of making a visualization coherent is serial.
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1. Introduction

The imagination is implicated in many aspects of human cognition, including planning,

problem solving, hypothetical thinking, counterfactual thinking, theory of mind, and men-

tal time travel (Davies, Atance, & Martin-Ordas, 2011). Despite extensive research on

imagination as a facilitator for these abilities (see, e.g., Markman, Klein, & Suhr, 2012),

and on the properties of mental images (Kosslyn, 1996), the processes that generate the

content of imagined scenes are largely unstudied.
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This work focuses on imagination related to the most studied sensory modality: vision.

When someone imagines a visual scene (e.g., of a mouse eating cheese), she can use

visual memories from many different experiences as the components of the new scene.

How these components are selected from memory is not obvious. If more than the mouse

and cheese are included in the scene, it is unclear what makes the selection of some

elements (e.g., a cat, mousetrap, floorboards, or a countertop) more likely than others

(e.g., a rollercoaster, map of Belarus, or cruise ship).

What is known is that people do not arbitrarily select the components for their imagin-

ings, even if those imaginings are entirely fictional (Cockbain, Vertolli, & Davies, 2014;

Ward, 1994). There is an intuitive coherence imposed on imagined scenes that inhibits

unusual and sometimes even highly creative combinations. Our mental images, for the

most part, make sense and are not populated by random objects in random placements.

How objects are selected such that imagined scenes are coherent is an important subprob-

lem of the generative imagination task.1

Visual perception takes information from the world and, through different processes,

detects increasingly abstract properties (Attneave, 1954; Barlow, 1961). Unlike vision,

imagination must use stored representations to construct an imagined scene (e.g., a

mouse eating cheese). Imagination goes beyond what is explicitly represented in the

text or memory, generating novel combinations of imagined things, in novel arrange-

ments.2 At the same time, these novel combinations must be coherent and realistic—
that is, they must conform to the regularities of the world as it has been experienced.

A mouse and cheese belong together in a way that a mouse and a space shuttle do

not. How the mind creates coherent, novel scenes in imagination is the subject of this

research.

Mental imagery—the rendering of an internal, depictive image that resembles what

one would see in the real world (Kosslyn, 1996)—is often thought to be identical

with visual imagination. However, we see the rendering of a mental image as a final,

optional stage in the overall generative process. Coherence relations, in this view, are

determined in cognitive processing prior to the low-level depictive parameters of men-

tal imagery. That is, if visual mental imagery exists (and we acknowledge that it is a

debate in the literature; see Kosslyn, Thompson, & Ganis, 2006; Pylyshyn, 2002), it

requires some kind of previously generated scene description to render as colors at

particular locations. It is worth qualifying that we are currently agnostic to the partic-

ulars of the instantiation of this scene description. In sum, our goal is to create a

model of coherence generation that is psychologically and neurally plausible. We pre-

sent an implemented cognitive model, called Coherencer, and compare it to three

other models: an approximation of a naive Bayesian network, a connectionist model,

and a holographic model.

In each case, we expect that Coherencer will outperform the other models. Each of the

functional distinctions between it and the other models provides specific and important

advantages to the coherence process. We discuss these distinctions before each of the

comparisons.
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2. Models

In this section, we address each of the models in turn. We begin with a detailed dis-

cussion of the original model that preceded Coherencer and the larger architecture of

which it is a part. We then consider our own implementation of Thagard’s connectionist

algorithm. Finally, we address the holographic memory model.

2.1. Coherencer

The Science of Imagination Laboratory Imagination Engine (SOILIE) is a computa-

tional model of the generative processes of imagination (Breault, Ouellet, Somers, &

Davies, 2013). SOILIE takes a single word as input (the “query”) and returns a collection

of associated labels with their relative positions on a two-dimensional mental canvas.

SOILIE’s processes are designed to model the way humans create visual imagined scene

descriptions. The resulting scenes can be rendered to more easily assess the output, but

this rendering process is not designed to model human behavior.

The core theory behind SOILIE is that novel imagined scenes are recombinations of ele-

ments from previous experience. SOILIE’s “experiences” are labeled images from the web.

SOILIE must determine which labels are appropriate to select, given a particular query,

when generating a scene. SOILIE uses co-occurrence relations to make this selection. The

motivation for this is that if an agent is tasked with imagining a scene with, say, a “car” in

it, then it will choose other objects in the scene based on what objects have appeared with

cars in memory. In the implementation, co-occurrence is determined by the frequency with

which one label is present in the same image with another label. We acknowledge that

human beings use more complex structures to determine what goes in visual scenes (e.g.,

schemas), but our goal with this work is to understand how simple associations are used.

SOILIE uses the Peekaboom database of labeled images as a substitute for human visual

memory. The dataset is the combined result of two online games: the ESP Game and Peeka-

boom (Von Ahn & Dabbish, 2004; Von Ahn, Liu, & Blum, 2006). This database consists of

approximately 50,000 images, with an average of 12 labels each. These labels are associated

with pixel locations in the images of the objects these labels describe. Thus, with this data-

base, SOILIE knows what is in each image, and where in the image those objects are.

SOILIE derives co-occurrence probabilities from the conditional relative frequencies of

labels in the Peekaboom database. Co-occurrence probabilities are calculated by dividing

the total number of images (I) in the Peekaboom database that contain the co-occurring

label (l) and a particular query (q) by the total number of images with just the query.

Using set theory notation, this yields:

PðljqÞ ¼ jIq \ Ilj
jIqj ð1Þ

where ∩ indicates set intersection and ‖ indicates cardinality (i.e., the total number of

elements in the set). One important feature of this formalization is that it is
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non-commutative (i.e., P yields a different probability for mouse given cheese than it

does for cheese given mouse). Parallel research on co-occurrence in machine learning

suggests that although this is more realistic (e.g., almost all weddings have flowers but

most flowers are not in weddings), most models do not account for it (Huang, Yu, &

Zhou, 2012; Zhang & Zhou, 2013).

Research in neuroscience suggests that visual working memory can hold approxi-

mately three to five chunks of “average complexity” (Cowan, 2001; Edin et al.,

2009). As such, SOILIE retrieves four new labels, in addition to the query, to be

placed in the imagined scene. It is possible that chunking (i.e., combining two or

more elements) can occur, but we chose to ignore it for simplicity. The result is that

four labels, excluding the query, are retrieved by SOILIE from the co-occurrence

data.

2.1.1. The problem: Incoherence
After working with earlier instantiations of SOILIE (Breault et al., 2013), a problem

became apparent. When images are selected using labels with the highest co-occurrence,

or the “top-n,” labels,3 the scenes produced are often contextually incoherent. For exam-

ple, SOILIE was queried with the word “mouse,” which is polysemous (i.e., it has multi-

ple, related meanings; in this case, a computer mouse and the animal mouse). SOILIE

returned an image containing “animal,” “computer,” and “monitor,” elements from differ-

ent senses of the word in the same image as a result of the underlying polysemy. We call

this problem “incoherence.”

Reducing images to co-occurrence probabilities in visual memory, as SOILIE does,

makes the images, labels, and co-occurrence relations that separate the polysemous mean-

ings no longer directly detectable. They are collapsed into a single dimension associating

pairs of labels (see Table 1).

Incoherence and related problems caused by dimensionality collapse are not limited to

word overlap and polysemy. Given a particular selection of labels, all of which co-occur, it

is still possible that no single image exists in the database that has all of those labels. For

example, one image might contain “doctor,” “needle,” “policeman,” and “gun”; another

Table 1

Label co-occurrence probability of two images alone and in SOILIE’s complete database. This shows how

incoherent scene descriptions can emerge when looking at the top co-occurring labels

Image 1 labels: mouse, eye, rodent, rat, animal, ear, ears

Image 2 labels: mouse, wires, monitor, screen, headphones, computer

Co-occurrence of each label with query “mouse” given only those two images: 0.5
Co-occurrence of label with query “mouse” using all images in the database:

Rat 0.29 Monitor 0.12 Eye 0.06

Ear 0.19 Screen 0.10 Headphones 0.01

Computer 0.17 Rodent 0.08 Wires 0.01

Animal 0.13 Ears 0.07

Top-4 labels for the query “mouse” based on all images using co-occurrence:
rat, ear, computer, animal
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might contain “doctor,” “morphine,” “surfer,” and “trunks”; and a third might contain “nee-

dle,” “morphine,” “policeman,” “gun,” “surfer,” and “trunks.” Thus, all seven labels would

co-occur in the database in general without any individual image containing the entire set.

To combine the entire set would require an insensitivity to the underlying dependency rela-

tions (e.g., needle and drug to policeman in the absence or presence of a doctor). In a given

context, some objects are dependent and some are not. Assuming that they are all indepen-

dent is problematic, as we see in the resulting incoherent combinations.

Models that use only a single dimension, co-occurrence with the query (like SOILIE’s

top-n model), assume the labels are conditionally independent of one another, and as

such, they are unable to infer the appropriate contextual relations from differences in the

underlying images. They often produce incoherent images relative to what they know

about the world (i.e., the database of images; see Fig. 1).4

2.1.2. The solution: Coherencer
To solve the incoherence problem, we chose to augment the top-n approach with a

paired association search using a serial, local-hill searching algorithm. The resulting

model is Coherencer.

Coherencer operates as follows (see Fig. 2; for a formal description, see Vertolli &

Davies, 2014). First, a top-n search gathers the top four co-occurring labels with the

query (any co-occurrence greater than zero). Then, an associative search checks

whether each label in the pool co-occurs with all the others, as well as with the

query. The mean of these co-occurrence relations is the overall co-occurrence score

for that list of labels. Labels with low co-occurrence in the network at a given time

step are removed from the set (i.e., rejected). New labels that co-occur with the query

Fig. 1. Incoherent image that blends two contexts from query “mouse” with output “rat,” “ear,” “computer,”

and “keyboard.” Note that the image actually shows a groundhog that was mislabeled as a “rat.”
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are then randomly swapped in to replace the rejected label. This cycle repeats until

the overall co-occurrence score for the list exceeds a given threshold, which is

selected via a random parameter search (i.e., the threshold which achieves the best

score on the validation set of images). Once the threshold is exceeded, the set that

remains is returned for inclusion in the imagined scene (to be placed in locations and

perhaps to be rendered later with mental imagery). If the set of labels that co-occur

with the query is exhausted, the model returns the collection of labels with the high-

est mean co-occurrence probability.

2.2. Thagard’s connectionist model

We built a connectionist model as described in Thagard (2002) in order to compare

Coherencer to a locally parallel algorithm that was competitive in the coherence literature

(see Fig. 3). The model was built as follows.

Input:
Query (one word)

Top-n:
Returns the top-4 co-
occurring labels with query 

Calculate average co-
occurrence probability of all 
label pairs from matrix

Check if average is 
better than current 
best

Store label set as 
new current best

Check if average 
passes threshold (λ)

Output:
Return current best 4 labels + 
query

Add random label 
from labels that co-
occur with query

Remove label with 
lowest average co-
occurrence

Check if there are 
any other labels that 
co-occur with query

Yes

Yes

Yes

No

No

No

Fig. 2. Control in Coherencer.
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A node is created for the query and every label co-occurring with the query.

Co-occurring labels create positive constraints where the presence of a label in an image

increases the likelihood of another label in the image. For every positive constraint

between two labels, an excitatory link is placed between the corresponding nodes with a

weight equal to the co-occurrence probability.5 When two words never co-occur in the

memory (a negative constraint), an inhibitory connection is set between corresponding

nodes with a weight set to the average of all non-zero co-occurrence probabilities, Pmean.
6

An initial activation of 0.24 is assigned to each node except for the query node, which is

locked to an activation of 1.0. All of these parameters were assigned using a random

parameter search. Node activations are updated until the amount of change is lower than

a set threshold. All nodes (except for the query node) have their activation updated in

parallel using the following formula:7

atþ1 ¼ atð1� dÞ þ f ðnetÞ ð2Þ

Input:
Query (one word)

Construct a node for 
the query and each 
co-occurring label with 
the query

Calculate new 
activation for each 
node

Update nodes with 
new activation

Check if average 
activation change 
over past 10 
iterations is less 
than threshold (θ)

Output:
Return top-4 labels with 
highest activation + query

Check if 500 iterations 
occurred

Yes

Yes

No

No

Set excitatory link if 
co-occurrence probability 
is greater than zero, 
otherwise set inhibitory

Set activation of nodes to 
0.01 and lock activation 
of 1.0 to query node

Fig. 3. Control in Thagard’s model.
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where at is a vector of all the node activations at time t, d is a scalar decay parameter

(0.35) that decrements each node at every cycle, and the vector net is computed by:

net ¼ atW ð3Þ

where W is the weight matrix for the network with its rows corresponding to the node

being updated and the columns corresponding to the linked nodes (i.e., neighbors of node

i). The values at Wi,i (i.e., the diagonal of the matrix) are set to 0 so the activation passed

from a node to itself is 0. W also corresponds to Coherencer’s co-occurrence matrix with

all co-occurrence values of 0 set to Pmean. Finally, f is a function that performs element-

wise multiplication with a different number depending on the sign of each element of

net:

f ðnetÞ ¼ netix
x ¼ amax � ai if neti[ 0

x ¼ ai � amin if neti� 0

�
ð4Þ

where x is the variable multiplier, ai is the ith value of a, amax is the maximum activation

of a node (1.0), and amin is the minimum activation (�1.0). After the update, each node

is constrained to the maximum and minimum activation values if it exceeds them.

In the larger process, the activations will update until the average change in the sum

of all differences is less than a threshold (h) or until 261 iterations occur. The following

equation illustrates the former:

Dat ¼ 1

10n

Xt

t�10

Xn
i¼0

ðjat;i � at�1;ijÞ\h ð5Þ

where Da is the change in activation over the past 10 iterations, at,i means activation at

time t and node i, ‖ here indicates absolute value, and the threshold h is 0.007.8 The four

labels with the highest activation are selected for inclusion in the imagined scene, imple-

menting a kind of top-4 filter.

2.3. Holographic vectors

Previously, we showed the differences between Coherencer and the top-n model in

terms of co-occurrence probabilities. Now, we will compare these same two models using

holographic vector representations, which use a different kind of association and compar-

ison metrics. Holographic vectors have been used to specifically handle context-based

information in text (Jones & Mewhort, 2007). Although tested in a slightly different

domain, it is likely to capture more salient context information than co-occurrence proba-

bilities.

In addition to this, vector representations are considered to be a neurally plausible

abstraction. They are currently used in the Semantic Pointer Architecture (SPA;
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Eliasmith, 2013), which is the underlying architecture of SPAUN, currently the

world’s largest functional, spiking neural network model of the brain (Eliasmith et al.,

2012). They have also been used in related neural simulations of creativity (Thagard

& Stewart, 2011). Thus, holographic vector representations are not only mathematical

abstractions of associations but can also be used for neuron-level implementations of

cognitive models.

The holographic representation is set up as follows. Each label in the Peekaboom

image database is represented by a vector of 1,000 dimensions.9 Each of these vec-

tors is generated randomly by sampling 1,000 values from a normal distribution

with a mean of zero and a standard deviation of 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
1; 000

p
. As a result, each vec-

tor has a Euclidean length of approximately one and is approximately orthogonal to

every other vector. These vectors are the environment vectors (Jones & Mewhort,

2007).

Each label is also represented by a second type of vector, termed a memory vector.

A memory vector is a representation of the associations between a given label and all

other labels. Memory vectors can be constructed in a number of ways. Here, we

adopt the simplest of the methods that were used by Jones and Mewhort (2007). For

our purposes, an image is a collection of co-occurring labels. The memory vector for

a given label is the sum (using vector addition) of all environment vectors represent-

ing labels that the given label co-occurs with. If a label (A) co-occurs with the given

label (B) in only one image, that label (A)’s environment vector is added to the

memory vector of the given label (B) only once. If a label (A) co-occurs with the

given label (B) in more than one image, that label (A) is added to the memory vector

(B) once for each of those images.

In vector space models, similarity of concepts is measured as the angle, typically the

cosine, between vectors that represent those concepts. The cosine ranges from 1 to �1.

When comparing a pair of vectors, a cosine of 1 indicates that the pair of vectors is at a

0∘ angle and they are identical representations. A cosine of 0 indicates that the pair is at

a 90∘ angle, and they are completely unrelated representations.

Effectively, the cosine between a memory vector for a label q and the environment

vector for another label l is a noisy estimate of the label’s co-occurrence probability,

P(l|q), for any label l 6¼ q. A given label’s memory vector will be most similar to

the environment vectors that represent labels that co-occurred with the given label

most frequently. However, this is a noisy estimate of P(l|q), and as such will be less

accurate than storing the exact co-occurrence probabilities. There is no particular

advantage to using vectors in this way when one can instead use exact co-occurrence

probabilities.

However, holographic vectors are beneficial because of (1) their ability to represent

arbitrarily complex associations in a compressed form and (2) their spatial nature, allow-

ing for easy comparisons between any two representations to be made by measuring the

cosine of the angles between them. They are also more neurally plausible (3). One can

take advantage of (2), the spatial nature of the vectors. The cosine of a memory vector
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with another memory vector indicates how often the labels appear in similar images in

addition to the same images. Consequently, we chose to use this representation for our

comparison.

This completes our discussion of each of the models that will be compared. Each

model uses a different method to take as input a single label and return four other labels

that co-occur with that label in a given database. In the next section, we discuss the

specific details of the experimental analysis.

3. Experimental comparisons

In this section, we outline the details of the experimental comparisons and their results.

We begin with a discussion of the preprocessing we performed on the Peekaboom data-

base of images and their corresponding labels as well as how we trained the models,

selected their parameters, and assessed them. We also discuss a statistical metric that

allows us to ensure that the differences found between the models, many of which are

stochastic, are meaningful differences. We compare Coherencer to the top-n model and

Thagard’s connectionist model in the first two experiments, respectively. In the third

experiment, we compare Coherencer and the top-n across the two association metrics: co-

occurrence probabilities and holographic vectors.

Each model, including the original top-n model that Coherencer augments, entails a

different set of general assumptions for the imagination mechanism when it is com-

pared to Coherencer. Our evaluation of the original top-n model (relative to Coher-

encer) addresses whether imagination can assume statistical independence across its

associations (i.e., the probability of one label occurring is not related to the probabil-

ity of another label occurring). Our evaluation of the connectionist model deals with

whether a locally serial process or a locally parallel process better captures coherence.

And finally, our evaluation of the holographic model addresses how co-occurrence is

represented by the mechanism: average co-occurrence probabilities or cosines between

vectors.

We expect that humans can successfully infer scene-level associations with excellent

fidelity. Since none of the models at present can achieve expected human scores, we

argue that it is too early in this research program to be overly concerned with modeling

human data. That is, we do not need human data to know that none of these models do

this task as well as people do. We can productively evaluate them by comparing them to

each other on a measurement of accuracy, and we do not yet need to compare them to

quantitative human data—which in any case does not yet exist. When models are effica-

cious enough that they begin to approach human-level skill, it will then be productive to

compare them to empirical human data.

The basic task is as follows: A single label is input as the query to the model. The

model must then select four other labels that, together with the query, describe objects

that would appear in a plausible scene.
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3.1. Preprocessing

The entire Peekaboom database was filtered to remove all images with fewer than five

labels, and any labels that only occurred in those images (e.g., if “platypus” occurred in

images with fewer than five labels, and in no images with more than five labels, “platy-

pus” would be deleted from the database).

The database was then divided into a training, validation, and test sets in proportions

of 50-16-33, respectively. Images and labels were then recursively removed until every

image had at least five labels and every label was in each of the three sets. A total of

2,032 labels and 18,947 images remained after filtration. The training set of images was

then compressed to a data structure containing only the co-occurrence of labels expressed

as one of the association metrics: co-occurrence probabilities (Eq. 1) or the cosine scores

between holographic vectors. This was then input to each of the systems.

The parameters of each model were selected via a random parameter search on the val-

idation set of images, which has been shown to be a competitive approach in the litera-

ture (Bergstra & Bengio, 2012). The results of the parameter search for Coherencer and

Thagard’s model were very stable, so the search was terminated after 38 and 111 itera-

tions, respectively. For the holographic vector representation, the results were consistently

higher with the higher cosine thresholds, so we selected the highest possible threshold

(1.0) in an effort to maximize this trend. In all cases, scores were consistent across vali-

dation and test sets.

Since a cosine threshold of 1.0 is unusually high, we checked whether or not Coher-

encer was actually able to find label combinations that met that threshold in the holo-

graphic case. On every label simulated, Coherencer did not find any label sets at that

threshold. Instead, the model would search through the entire set of co-occurring labels

with the query and then return the best set it found over the course of that search.

Although this was an interesting finding, its exploration was left to future work.

3.2. Model run metric

The number of model runs used in each experiment conforms to Byrne’s (2013) ana-

lytic model run metric. The metric specifies the necessary number of runs for a robust

result. It is derived from the formula for confidence intervals for proportions using the

following formula:

n ¼ pð1� pÞ z

w

� �2

ð6Þ

where n is the necessary number of model runs, p is the proportion of successes for the

model, z is the standard score of the desired confidence interval distribution, and w is half

the difference between the two score proportions (e.g., comparing 20% success rate to

30%, half the difference is 10/2 = 5% and the w value is 0.05). The proportional success

rate for this calculation is based on a single trial run of each model. Effectively, the
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model run metric reverses the standard confidence interval equation to figure out the

number of runs necessary (n) to achieve that level of confidence (z) given the size of dif-

ference between the results of the two models compared (w) and the results of each of

the models alone (p).

3.3. Coherencer and top-n

The first comparison is between Coherencer and the original, top-n model. If at least

one of the original images contains all five labels that a model outputs for the generated

image, including the query, the model scores a point. If no images contain all five labels,

no point is scored. The total points scored by a model are compared, where the other
model failed to score a point for the same query (i.e., excluding labels where both models

failed or both models succeeded).

Each model was run using all 2,032 labels as queries. The top-n procedure always

yields the same result (the top-4 associated labels), so it was run once per query label.

Coherencer has stochastic variation in its results, so it was run 83 times on all 2,032

labels based on Byrne’s (2013) metric. The totals were averaged across runs. We

expected Coherencer to outperform the top-n model.

3.3.1. Results
Coherencer had more successful matches than the top-n model, as hypothesized:10

McNemar’s repeated measures chi-square test demonstrates that Coherencer performed

significantly better than top-n, v2(1, N = 2,032) = 239.00, p < .000, / = .20. The average

scores in each of the categories are listed in Table 2. Model runs where Coherencer and

top-n both fail or both succeed on a given query (i.e., the models perform identically) are

ignored. The comparison occurs on runs where one model failed and the other succeeded.

All values are reported for completeness. Both the actual number of runs and the statisti-

cally expected number of runs for a given category are reported (see Table 2).

3.4. Coherencer and Thagard’s model

In this section, we discuss the comparison between Coherencer and Thagard’s model.

The method is the same as that used to compare Coherencer and top-n. To reiterate, a

Table 2

McNemar v2 calculation between Coherencer and top-n

Coherencer

Failure

Coherencer

Success Total

Top-n failure Actual 1,272.0 498.0 1,770.0

Expected 1,208.2 561.8

Top-n success Actual 115.0 147.0 262.0

Expected 178.8 83.2

Total 1,387.0 645.0 2,032.0
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model successfully describes an imagined scene when it is realistic, as determined by

whether there was an image in the test set that had the same set of labels as the imagined

scene. Byrne’s (2013) metric dictates 41 runs for each model. We expected Coherencer

to outperform Thagard’s model.

3.4.1. Results
Coherencer had more successful matches than Thagard’s model, as hypothesized:

McNemar’s repeated measures chi-square test demonstrates that Coherencer performed

significantly better than Thagard’s model, v2(1, N = 2,032) = 548.00, p < .000,

/ = .09. The average scores in each of the categories are listed in Table 3. Model

runs where Coherencer and Thagard’s model both fail or both succeed on a given

query are ignored. The comparison occurs between the runs where one model failed

and the other succeeded. As is standard with chi-square tests, both the actual number

of runs and the statistically expected number of runs for a given category are

reported.

3.5. Co-occurrence and holographic

We discuss the comparison between co-occurrence probabilities and holographic vector

representations of association in terms of the top-n and Coherencer models. This means

that four model-representation pairs were compared: co-occurrence-top-n, co-occurrence-
Coherencer, holographic-top-n, and holographic-Coherencer. The current method follows

the same outline as the previous two. However, due to the complexity of the comparison

across four conditions, the results could no longer be paired for comparison. As a conse-

quence, the total successes and failures of each condition were compared as a whole.

Byrne’s (2013) metric required 83 model runs for Coherencer on the conditions using co-

occurrence probabilities and 130 runs on the holographic vector conditions. Top-n was

run once for each type of association. The hypothesis was that Coherencer would outper-

form the top-n model across both association types, following the results of the initial

experimental comparison. We also expected the holographic memory vector associations,

by capturing more contextual data, would outperform the co-occurrence probability repre-

sentation across both models.

Table 3

McNemar v2 calculation between Coherencer and Thagard’s model (TM)

Coherencer

Failure

Coherencer

Success Total

TM failure Actual 1,370.0 620.0 1,990.0

Expected 1,358.3 631.7

TM success Actual 17.0 25.0 42.0

Expected 28.7 13.3

Total 1,387.0 645.0 2,032.0
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3.5.1. Results
Coherencer outperformed the top-n model across both types of association, as

hypothesized, replicating our initial comparison. Contrary to our hypothesis, the

co-occurrence probability representation outperformed the holographic vector repre-

sentation across both models. The success rates out of the 2,032 possible query

labels for each of the four conditions (top-n and co-occurrence, top-n and holo-

graphic, Coherencer and co-occurrence, Coherencer and holographic) are shown in

Fig. 4.

As a consequence of the categorical nature of the two independent variables (e.g., top-

n or Coherencer) and the dependent variable (success or failure), we used a three-way

loglinear analysis in order to assess statistical significance. For simplicity, one can think

of a loglinear analysis as an ANOVA for categorical data: It determines the type of effect

present across the three categorical variables.

The three-way loglinear analysis produced a final model that retained all effects. The

likelihood ratio of this model was v2(0) = 0, p = 1. This indicated that the highest-order

interaction (model type 9 compression type 9 score) was significant, v2(1) = 5.37,

p = .020. To break down this effect, separate chi-square tests on the compression type

were performed separately for each model. For Coherencer, there was a significant associ-

ation between the compression type and success, v2(1) = 87.58, p < .000.11 This was also

true for the top-n model, v2(1) = 74.96, p < .000. Odds ratios indicated that the odds of

success were 1.98 higher using co-occurrence probabilities for Coherencer, and 2.74

higher for top-n.

Fig. 4. Model success rate with different association type-model pairs out of a total 2,032 possible successes.

All error bars were omitted as they were less than 0.01% across all of Coherencer’s conditions.
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4. Discussion

The results support the hypothesis that Coherencer generates scenes that are more

coherent than the top-n model and Thagard’s connectionist model. They also support the

notion that co-occurrence probabilities are a better association than holographic vectors

and that better generative models (e.g., Coherencer) improve quality regardless of the

association type used (e.g., co-occurrence probabilities, holographic vectors). In all cases,

a “better result” is assumed to indicate what constraints better capture the required func-

tionality that a human brain could implement. Again, we expect that humans can accu-

rately infer higher-order associations with near perfect fidelity, so models that cannot

even closely approximate this on a much simpler task are not likely candidates. However,

the effect sizes in all cases were rather small, so the conclusions and speculations in this

section are given tentatively.

On the basis of the results that show Coherencer’s superiority to the top-n model, we

can tentatively conclude that the mechanism for visual generative cognition in the human,

visual imagination, cannot assume independence between its associated objects as per the

top-n model. This means that models that assume such independence are not plausible

candidates (e.g., naive Bayesian classifiers).

We can also conclude that both locally parallel approaches similar to Thagard’s con-

nectionist model as well as vector representations that use an addition relation and cosine

similarity scores to approximate simple associations do not accurately model human

beings in this task. In both cases, our serial algorithm outperformed these algorithms and

people (we assume) are able to outperform them all.

Eliasmith (2013) specifically mentions that these vector models experience memory

limitations when there are more than eight symbols in a 500-dimensional space and the

number of symbols scales linearly with the number of dimensions. Our system uses thou-

sands of symbols. There has been some effort to remedy these limitations using “chained”

structures, however, and a more sophisticated holographic system might be able to over-

come these limitations.

Similarly, Thagard’s connectionist model has largely been surpassed by more state-of-

the-art neural network approaches (e.g., deep networks). At present, we are unable to gen-

eralize the current findings to these new approaches. Our future work focuses on these

models and how they might relate to the overall functionality of these networks and

Coherencer’s findings.

Before moving on to a discussion of related theoretical approaches, it is worth consid-

ering some limitations of the current model. At present, there are no higher-order rela-

tionships understood by the model (e.g., synonymy). So, Coherencer will often return

synonyms of the query or other potentially problematic objects (e.g., internal parts of the

query, more general descriptions of the query). This is certainly a limitation of the model

in a general sense. However, at present, it is not entirely clear that simple associations

(e.g., co-occurrence) can capture these properties, at least in the absence of sufficiently

complex processes and computations. Thus, it is possible that, in the current context,
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these limitations are less a property of the model and more a property of the current

domain. That is, humans likely use more than just simple associations to achieve coher-

ence, especially when considering more complex properties like synonymy. Future work

will need to resolve many of these issues.

4.1. Related theoretical approaches

Research on generative cognitive faculties traditionally focuses on determining con-

straints that will exclude combinations that humans do not generate from the total set of

options that could be generated, much like Coherencer. We will describe three prominent

models that select different constraints to achieve this goal: a top-down conceptual

approach to constraints in word-pair concept combinations (the C3 model; Costello &

Keane, 2000), a modal approach to constraints through the use of simulations in percep-

tual symbol systems (Barsalou, 1999), and an amodal approach to constraint satisfaction

from the literature on coherence (Thagard, 2002).

4.1.1. The C3 model
The work by Costello and Keane (2000) focuses on the generation and interpretation

of modifier-head word pair combinations (e.g., “pickled cat”) that are novel and often

creative. They frame their work in terms of a “constraint theory of concept combination”

(Costello & Keane, 1997). The theory proposes that concept combination is composed of

two components—a “generative mechanism” and a set of three constraints: diagnosticity,

plausibility, and informativeness. The generative mechanism builds all possible subsets of

predicates (e.g., “pickled,” “furry,”) of the constituent (e.g., “cat”) and related concepts,

while the constraints discourage unlikely combinations and encourage highly likely com-

binations. They created the C3 model to computationally test their approach.

The model finds a coherent (although the authors do not use the word) combination of

predicates to justify a modifier-head word pair. Although this is a different task than that

of Coherencer, C3 has some similarities with Coherencer that makes the comparison valu-

able.

The C3 model computationally implements the three constraints as follows. The diag-

nosticity constraint is represented by the joint relative frequency of the predicate and con-

cept (i.e., |C ∩ P|/|C ∪ P|, where C is the concept and P is the predicate). Plausibility is

represented by the average predicate overlap between stored instances of word pairs and

the current set of predicates for a new word pair (i.e.,

P
A2O kAk=kNk

jOj , where O is the set of

pairs whose predicates overlap with the new pair and N is the new pair; note that |A|
gives the number of pairs while ‖A‖ gives the number of predicates). Finally, a predicate

set for a new word pair is informative if it is not strictly a subset of a stored instance of

the prototype12 of the concept (i.e., if N * H or N * M, where H is any stored instance

of the head and M is any stored instance of the modifier).

Coherencer’s measure of co-occurrence is the conditional relative frequency of two

objects in a scene (i.e., |A∩B|/|B| or |A∩B|/|A|, where ‖ gives the number of scenes
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containing the object). This is formally similar to the diagnosticity constraint despite the

fact that Costello and Keane (2000) describe predicate overlap as the “co-occurrence” of

predicates in a different constraint: the plausibility constraint. That is, they use the word

co-occurrence in a formally different way. Even though diagnosticity is similar to our

notion of co-occurrence, they are not the same. Unlike their measure of diagnosticity,

conditional relative frequency is non-commutative, as we previously stated, whereas joint

relative frequencies are commutative. We take this feature to be essential to cognition. At

minimum, it assumes less about the world in that commutativity is more restrictive and,

thus, less general.13

The other two constraints are problematic for our theoretical orientation to memory

and storage. They assume that the stored representations are perfectly represented and

accessible; otherwise they would not be usable for overlap comparison. This is inconsis-

tent with the constructive memory hypothesis, which states that only traces of the com-

plete memory are stored (Conway & Pleydell-Pearce, 2000; Rubin, Schrauf, &

Greenberg, 2003; Schacter et al., 2012; Tulving & Watkins, 1973). Upon retrieval, the

rest of the experience must be reconstructed from the traces. That is, these traces function

as lossy compressed representations. This means that complete memories are not trivially
accessible. Consequently, either Costello and Keane (2000) are modeling a different form

of cognitive generation that occurs after the generative processes we are considering (a

possibility we take to be unlikely) or they are excluding a fundamental component of the

generative process.

Additionally, our new evaluation technique is not designed to evaluate output models

that use the plausibility and informativeness constraints. Our technique exploits the lossy-

ness of memory storage in order to quantitatively assess the mechanisms of cognitive

generation. The C3 model does not compress its memory. Interpreted in another way, our

evaluation requires that the output of our model is perfectly plausible and uninformative,

according to their constraints. However, we believe these constraints are cognitively

implausible, despite their name, for reasons mentioned above (e.g., they conflict with the

constructive memory hypothesis).

The final point that we address concerning the work of Costello and Keane (2000) has

to do with the control sequence of their C3 model. The model first generates a set of par-

tial predicate sets for a new word pair by selecting the most highly correlated predicates

from the head and modifier concepts. Then, the model expands on these partial interpreta-

tions by adding new predicates from its knowledge base that have the highest plausibility

while still being informative (i.e., not strictly subsets of stored representations). Due to

the rather small size of their knowledge base (76 instances with 22 predicates on aver-

age), it is computationally tractable to compute the “best” predicate set for a new word

pair. In the computational assessment, they discuss the model computes the top 10 predi-

cate sets for each pair. A thresholding mechanism is also used to filter the output of their

model.

Coherencer has some similarities and some differences to the C3 model. It has a simi-

lar seeding process where top associations with the initial input are computed. It then

expands this set using more loosely associated concepts much like the C3 model.
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However, its input database contains over 18,000 scenes and over 2,000 possible objects,

so assessment of all possible combinations is intractable. Coherencer also uses a thresh-

old, but it is more deeply integrated into the model: The threshold is used to determine

when Coherencer should stop searching; it is not used to select which variation should be

selected after they are all (or a large subset of variations) are generated.

We have several reasons to prefer Coherencer over C3. C3 implements an unrealistic

theory of memory, in that it is uncompressed. It is unable to deal with large amounts of

data, both because of memory and computational restrictions. Interestingly, the authors

explicitly mention that an improvement on their model is Paul Thagard’s parallel connec-

tionist model—which Coherencer outperforms. Coherencer also better fits with what we

know about the brain and its functioning, as will be discussed below.

4.1.2. Modal approach: Perceptual symbol systems
Barsalou’s (1999) perceptual symbol systems (PSS) theory is an example of embodied

theories of representation. Although this work is often viewed in direct contrast to more

abstract approaches, like Coherencer, there is actually a great deal of overlap. In what

follows, we briefly describe PSS and some of the commonalities between it and the

Coherencer model.

The PSS theory initially challenges both the top-down and amodal, constraint-based

approaches. Its approach integrates cognition intimately with perceptual processes that are

explicitly modal and use analogy, both of which are properties that are related to the

coherence problem, as we will argue below. According to PSS theory, the same neu-

rocognitive systems involved in perception are also used for representation.

One of the central tenets of Barsalou’s approach is his definition of a perceptual

symbol, which can be described as follows. Unlike imagery or related conscious sub-

jective experiences, a perceptual symbol is a record of the neural states that occur in

perception. In this sense, it is a memory trace of perception and it corresponds to the

compressed associations we discussed throughout the paper. These traces are stored

via Hebbian strengthening or multisensory integration common to the hippocampus

(another commonality with our theoretical approach, which we discuss below), and at

no point do these traces ever completely transduce into an amodal symbol (Barsalou,

1999).

The traces, like the compressed representations, are only schematic (Barsalou, 1999).

They do not encode a complete representation of the original experience, “only a very

small subset that represents a coherent aspect of the state” (Barsalou, 1999). Conse-

quently, citing Damasio (1989), Barsalou (1999) endorses something similar to the con-

structive view of memory and recall in order to account for the processes that work with

these compressed, schematic, stored representations. According to Barsalou, there is a

schematic structure for “mouse” that integrates (perhaps in an integrative region like the

hippocampus) all the perceptual experiences of mice of various sensory modalities. Addi-

tionally, this schematic structure is also linked with a linguistic equivalent: “Thus, lin-

guistic symbols index and control simulations to provide humans with . . . conceptual

ability” (Barsalou, 1999).

902 M. O. Vertolli, M. A. Kelly, J. Davies / Cognitive Science 42 (2018)



According to Barsalou (1999), the schematic structure is a compressed representation

(i.e., an index) of a holistic neural state (i.e., an experience) of a “mouse,” for example.

Linguistic symbols (e.g., the actual word “mouse”) can then be coupled with these sche-

matic indices such that they function as a second-order reference to the underlying holis-

tic state(s).

For Barsalou and Damasio, the construction of these schematic indices in memory

does not occur in the perceptual areas (i.e., the position of the holistic neural state),

but in dedicated associative/integrative regions (e.g., the hippocampus and related

areas). Damasio (1989) refers to the processing in this region as “amodal” because

these areas do not “map sensory or motor activity in a way that preserves feature-

based, topographic and topological relations of the external environment as they

appear in psychological experience.”14 In contrast, Barsalou refers to these schematic

indices as perceptual symbols.

Due to the separation between these, perhaps, transmodal (rather than “amodal”) areas,

it is possible to temporarily ignore the underlying holistic neural states in an effort to bet-

ter understand how these associative convergence zones might function. The schematic

index can then be used as an incomplete, but still useful, replacement for the holistic neu-

ral state exactly as it is done in the brain.

Although at first glance the labels used in Coherencer appear to be amodal and incon-

sistent with perceptual symbol’s systems theory, as theoretical entities they correspond to

the schematic indices of Barsalou and Damasio. This is particularly evident in Coher-

encer’s role in the larger imagination engine SOILIE (Vertolli et al., 2014), in which

Coherencer’s label-based “symbols” are associated with hundreds of perceptual instances

of the objects they represent and are not, by themselves, perceptual traces.

4.1.3. Amodal approach: Thagard and coherence
Thagard (2002) devotes an entire book to the coherence problem. He describes coher-

ence as an optimization problem: the selection of the best combination of elements to

optimize according to some set of criteria. Thagard takes these criteria to be a set of posi-

tive constraints (i.e., inclusion of one component increases the likelihood of inclusion of

another component) and negative constraints (i.e., inclusion of one component decreases

the likelihood of inclusion of another component). These constraints are optimized by

maximizing the number of positive constraints in a collection and minimizing the nega-

tive constraints.15

This formalization of coherence is “amodal” in the same way that associative conver-

gence zones for Damasio (1989) are “amodal.” Mainly, it describes a type of functional-

ity that could be applied to many different modalities. Interestingly, the commonalities do

not stop there.

Thagard (2002) outlines a number of general classes of computational models that can

resolve coherence problems. One class is the “incremental” algorithm. Incremental algo-

rithms evaluate coherence at each time step relative to a single pool of selected elements.

In Thagard’s description, each element is evaluated only once when it is added to the

pool.
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Costello and Keane (2000), Barsalou (1999), and Coherencer use a similar approach

with a few differences. First, the incremental algorithms described in Thagard (2002)

build their initial pool one element at a time, whereas all the other models seed their ini-

tial pool with the strongest associations. Second, the space within the incremental algo-

rithm’s “working memory” can be of any size: It could literally contain the entire set of

possible elements if that was what maximized coherence. Costello and Keane (2000) fol-

low this approach when it comes to their predicates, while Coherencer has a finite limit

on the size of its pool, which models the limits of human working memory. Barsalou

(1999) does not specify. Third, Coherencer does not maximize coherence. It makes sure

that it passes a certain threshold. Both other models use a maximization approach, like

Thagard. Barsalou (1999), on the other hand, recognizes that constraints in the context

can cause deviations from this global maximum, which aligns more closely with our posi-

tion. Fourth, once an element has been selected by the incremental algorithm, it cannot

be unselected. Costello and Keane (2000) do not describe their algorithm at this level of

detail, but it seems like it is closer to Thagard’s approach. Barsalou (1999) does not spec-

ify. Coherencer maintains backtracking capabilities for selected elements, but both Coher-

encer and the incremental algorithm cannot backtrack on rejected elements. The other

models do not specify. We take Coherencer and all the other models to be variations of

the incremental class of algorithms despite these differences: “Incremental” highlights the

serial approach that is a defining feature of the models.

Incremental algorithms often lead to suboptimal solutions, much like Barsalou (1999)

anticipated, by getting stuck on local optima. This is a direct consequence of the serial

comparisons: These models are limited to a local perspective, so they often reject ele-

ments that are optimal at a global level. Although backtracking for these rejected ele-

ments has been implemented as a fix for serial approaches, Thagard suggests that this is

worse than some alternatives.

Thagard (2002) proposes a connectionist model in response to this problem. These

models examine solutions in parallel, which decreases the probability of getting stuck on

suboptimal solutions. Consequently, we expected connectionist models to outperform

incremental algorithms like Coherencer and C3 on coherence-related problems. Although

we found that they did not in our particular instantiation of the problem, Thagard has

implemented a number of connectionist models with success (e.g., Eliasmith & Thagard,

1997; Thagard, 1989, 1991, 1992a,b, 2002; Thagard, Holyoak, Nelson, & Gochfeld,

1990). However, he does leave one caveat for the weaker class of incremental algorithms.

Thagard points out that they have one important contribution: They can offer valuable

insights into human cognition, which is known to perform suboptimally in many domains,

including coherence.

We add to this position the idea that, like Barsalou (1999) recognizes, suboptimality is

often indicative of a more extensive system of constraints. The essence of being extre-

mely sensitive to local conditions means that one cannot be globally optimal. This is the

fundamental idea behind the no free lunch theorem for theories of optimization in com-

puter science (Wolpert & Macready, 1997). With increasing specificity and precision, one

loses general applicability and vice versa.
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Recall that our theory is that Coherencer’s serial approach to inferring coherence

through higher-order dependency relations provides some of the necessary requirements

for a generative mechanism of imagination. We argue that these same features give asso-

ciative areas in the brain, specifically the hippocampus, the necessary requirements to pre-

serve semantic constraints while generating idiosyncratic instantiations of those

constraints. This theory and the Coherencer model have a lot in common with broader

theoretical, computational, and neuroscientific literatures. We will address some of these

points of overlap before discussing some predictions of the model.

4.2. Coherencer and the brain

Some of the research discussed above suggests an involvement of the hippocampus in

generative mechanisms in the brain. We argue that the conversion process from semantic

memory to episodic memory to simulated experience (i.e., abstract to modal internal rep-

resentations), in particular, is mediated by this neural structure.16 The argument integrates

many of the threads we have discussed above. We will begin by addressing some of the

earlier theories of the hippocampus and then move to more contemporary theories, espe-

cially scene construction theory (SCT).

Research on the distinction between semantic dementia and Alzheimer’s disease sug-

gests that the hippocampus is much more strongly associated with autobiographical

details (i.e., episodic memories) than semantic memory proper (Chan et al., 2001).

More recent research into remote memory extends this basic insight. Remote memory

is one of two types of long-term memory (the other is synaptic consolidation), which

encompasses memories that last more than 24 hours (Dudai, 2004b). The two types are

differentiated by the length of time they take to consolidate and stabilize in the brain on

average, as well as the underlying mechanisms. Remote memory takes days to decades to

stabilize and uses the hippocampus. In particular, remote memory affects systems-level

information traces distributed across the brain (Dudai, 2004b; Frankland & Bontempi,

2005). There are three main theories of remote memory: the cognitive map theory, the

standard consolidation theory, and the multiple trace theory.

Cognitive map theory claims that the hippocampus creates the context of episodic

memories through allocentric spatial representations (Burgess, Maguire, & O’Keefe,

2002; Shimamura, Squire, & Shacter, 2002). This always occurs for both recent and

remote memories, and it does not occur for semantic memories, as they are context-free.

The standard consolidation theory posits that the hippocampus and related areas are

used to consolidate memory traces to the neocortex and other extrahippocampal structures

(Dudai, 2004b; Frankland & Bontempi, 2005). Memory consolidation is defined as the

progressive process by which long-term memories are stabilized post-acquisition (Dudai,

2004a). In this view, the hippocampus is no longer required after consolidation (in direct

opposition to cognitive map theory). No distinction is made between semantic and episo-

dic memories, so it is assumed that both undergo the same process, which also contra-

dicts cognitive map theory.
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The “multiple trace theory” claims that the hippocampus’s primary function is the re-

experiencing of past, autobiographical events regardless of their age (Moscovitch, Rosen-

baum, et al., 2005; Moscovitch, Westmacott, et al., 2005; Moscovitch, Nadel, Winocur,

Gilboa, & Rosenbaum, 2006). In this view, each trace acts as an index to neocortical

regions (e.g., temporal cortex for object details) where the details of the relevant event

are represented and stored. Memory retrieval is viewed as a form of re-encoding that

results in older memories having a wider distribution of traces throughout the hippocam-

pal complex. Semantic memory requires hippocampal processing early on, after which

the cortex dominates. Spatial, cognitive maps (i.e., spatial contexts) can be encoded in

the cortex in a schematic form of semantic memory, in direct contrast to cognitive map

theory’s position.

Multiple trace theory both integrates and expands the consolidation theory and cogni-

tive map theory. It also aligns closely with the constraint-based views already discussed.

It endorses the constructive memory hypothesis, emphasizes the re-experiential role of

the hippocampus, and highlights the importance of abstractive mechanisms for both sche-

mas and the consolidation of semantic memories.

With this in mind, we take generative imagination to be a reversal of the memory stor-

age process. Thus, instead of going from perception to episodic then semantic memory,

generative processes go from the highly abstract semantic memory to the schematic traces

of episodic memory and then the internal simulations of imaginary simulation (i.e., the

final, re-experiencing of some imagined event). Given how central the hippocampus is to

the memory storage process, our expectation is that it should also be central to the gener-

ative processes of imagination. The contemporary view of hippocampal function called

“SCT” begins to specify what these hippocampal processes might look like. In what fol-

lows, we will explore this theory of hippocampal function in detail in order to indirectly

explore how cognitive generation might occur in the brain.

Like multiple trace theory, SCT proposes that the hippocampus plays a role in the cre-

ation of a “coherent spatial context” in which details of episodic memories can be “mar-

tialed, bound and played” (Hassabis & Maguire, 2007; Maguire & Mullally, 2013).

Unlike multiple trace theory, SCT explicitly recognizes the role of the hippocampus in

imagined future experiences. In SCT, the hippocampus operates as an anticipatory struc-

ture much like Barsalou’s (1999) “conceptual system,” rather than just a memory (i.e.,

“recording”) system. In this role, it provides a “cohesive spatial framework” for “what is

outside the direct field of experience” that is grounded in what is processed in one’s

direct experiential field. One example is being aware of the back of the chair that one is

sitting on, when not touching or visually observing it.

The hippocampus has been implicated in cognitive functions as diverse as spatial navi-

gation, future-thinking, and imagination, in addition to its traditional role in memory

(Addis, Pan, Vu, Laiser, & Schacter, 2009; Botzung, Denkova, & Manning, 2008;

Maguire & Mullally, 2013; Szpunar, Watson, & McDermott, 2007). It is not that the hip-

pocampus is the only area of the brain responsible for these cognitive functions, but that

it provides an essential ingredient to all of them: the ability to create coherent, spatial

scenes.
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Although there has been some debate in the literature on this topic (Hassabis,

Kumaran, & Maguire, 2007; Maguire & Hassabis, 2011; Squire et al., 2010; Squire,

McDuff, & Frascino, 2011), SCT is also supportive of more recent research on a phe-

nomenon called “boundary extension” (Chadwick, Mullally, & Maguire, 2013; Maguire

& Mullally, 2013).17 Boundary extension is the filling out of an image or scene beyond

the edges of that scene. Boundary extension only occurs when viewing a complete scene

(as opposed to individual objects). People with damage to their hippocampus do not expe-

rience this effect, suggesting that the hippocampus is associated with one of the distinc-

tions between an independent object (e.g., a rock on a blank background or no

background at all) and an object as part of a scene.

The SCT is not a model that generates quantitative predictions of the information

processing of the underlying neuroscience. An information processing account would

allow for the prediction of more detailed and specific hypotheses (Kumaran &

Maguire, 2009).

4.2.1. Memory and cognitive generation in the hippocampus
As discussed, generative processes are necessary for various cognitive functions (e.g.,

imagination, future thinking, spatial navigation). Thus, we, like SCT, view many of the

neurocognitive processes used in generation on a continuum from normal memory retrie-

val processes to the fully generative constructions of imagination. Hassabis and Maguire

(2007) draw on three lines of evidence for this position: the constructive memory hypoth-

esis; a similar network of brain areas used in the recall of real, recall of fake, and imagi-

nation of new experiences; and the top-down effects of hippocampal processing on other

brain areas. We address and expand these points through comparisons with our proposed

framework.

The constructive memory hypothesis states that the recollection of past experiences is

a generative reconstruction on the basis of traces in long-term memory (Conway & Pley-

dell-Pearce, 2000; Rubin et al., 2003; Schacter et al., 2012). This is in direct contrast to

theories that propose memories are stored and retrieved in their entirety (e.g., see Brewer

& Dupree, 1983). Hassabis and Maguire (2007) argue that the constructive view is more

plausible on computational grounds (e.g., due to storage constraints and the needs of gen-

eralization and abstraction) as well as behavioral (e.g., it accounts for well-known mem-

ory errors).

For the next point, Hassabis and Maguire (2007) show a consistent pattern of neural

activation across imagination and scene construction phenomena. In a conjunction analy-

sis comparing the recall of real memories, fictitious memories created the week prior, and

new fictitious scenes imagined for the first time, the hippocampus, parahippocampal

gyrus, retrosplenial cortices, posterior parietal cortices, ventromedial prefrontal cortex,

and medial temporal cortices are all consistently active (Hassabis et al., 2007). This was

found in direct contrast to control conditions that required no scene construction (i.e., real

and imagined simple objects). In a position similar to Slotnick et al. (2012), Hassabis and

Maguire (2007) argue that it is this same network that has been implicated in all the vari-

ous processes closely associated with episodic memory (e.g., navigation, spatial
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reasoning, imagination). Many of the same brain regions are active across the scene con-

struction and imagery research as well.

Hassabis and Maguire (2007) also show that the leading alternatives for hippocampal

function—the subjective sense of time, a sense of selfhood, and autonoesis (i.e., mental

time travel and related phenomena)—are more closely associated with other brain areas.

SCT directly contrasts with claims that position them as the primary function of the hip-

pocampus (for one of these competing views, see Tulving, 2002).

In the previous two sections, we highlighted that what is unique to generative imagina-

tion is that it goes beyond what was originally stored in memory as per the constructive

memory hypothesis. Consistent with SCT, generation is more broadly applicable than

memory, in that it does not have to index a specific event in one’s past (i.e., episodic

memory retrieval). Our theory of imagination expands on SCT by incorporating Tha-

gard’s notion of optimization-based coherence. Thus, memory construction is algorithmi-

cally described as a form of optimization—or, more broadly, satisficing (Simon, 1956)—
of a combinatorial arrangement using semantic constraints. This optimization is directly

anticipatory. That is, it answers the question, given objects x, y, and z, what other objects
are likely to be present. Since this anticipatory function can be broadly applied, we

described it as an amodal form of optimization in the previous section.

Although SCT does not explicitly use co-occurrence in their description of the hip-

pocampus, they do use spatial properties such as proximity. As we stated in the introduc-

tion, co-occurrence is a highly compressed (i.e., general or abstract) representation of

many of these spatial properties: Every spatial relation implies that the objects possessing

that relation co-occur. Co-occurrence captures spatial as well as other associative proper-

ties. Consequently, it is consistent with SCT.

Finally, Coherencer and SCT have a similar processing sequence that is consistent with

both perceptual symbol systems and mental imagery. For SCT, the construction of antici-

pated extensions of the current scene in the hippocampus is propagated back down the

network to change the perceptual neural firing in the visual cortex towards the extended

view (Chadwick et al., 2013). This then propagates back to the hippocampus in a feed-

back loop.

All of the models discussed so far do something similar, if at a very abstract level. An

anticipated combination of objects (corresponding to a pattern of neuronal firing in the

visual cortex) is retrieved from a bank of possibilities in memory. Their associations are

assessed for coherence (corresponding to hippocampal processing). If it is not coherent

enough, one of the selected objects is swapped for a different possible object (i.e., a neu-

ronal pattern in the visual cortex).

An illustrative example is the task of moving through a dark room. If one started in

the bedroom, it would be highly unlikely to anticipate running into the kitchen table.

These are not the most highly associated objects with a bedroom. Consequently, most

people (with similar historical and cultural housing contexts) would probably anticipate a

hallway, carpet, walls, and maybe a distant railing for the stairs in their representation of

the space. If they step on part of a child’s toy, then they would likely update the space

with the as yet unexperienced parts of the toy, further toys, or related objects.
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The experience of the toy adds a new element to the context that further constrains antici-

patory processing.

4.2.2. Perceptual symbols
Another parallel between SCT and our framework has to do with the relationship

between hippocampal processing and systems used by perception. Kumaran and Maguire

(2009) argue that memory and perception are not discrete neural modules. The hippocam-

pus acts on neural firing in the visual cortex to create the experience of anticipatory

extension (Chadwick et al., 2013). Therefore, perception is motivated by neural process-

ing and memory as well as by environmental input.

Research by Howard, Kumaran, �Olafsd�ottir, and Spiers (2011) extended Kumaran and

Maguire’s work by differentiating the CA1 and CA3 subregions of the hippocampus.

According to Howard et al. (2011), the CA1 receives sensory input from the entorhinal

cortex and input from memory through the CA3 subregion. Perception informs memory

and memory informs perception as Barsalou (1999) argued. The CA1 operates as an asso-

ciative match-mismatch detector that responds when a pattern is recognized, the rest of

the pattern is anticipated, and then the anticipation is violated (e.g., A-B-C-D is shown

then A-B-D-C).

The seeding process proposed by Coherencer and the other models discussed is close

in functionality to the CA3 associative subregion in that both are the interface with mem-

ory retrieval and anticipatory processes. Although memory retrieval and anticipatory

processes are distinct, they intimately inform one another: Coherencer cannot return any-

thing without the initial structure (i.e., the most frequently co-occurring objects for a

given query) that is returned from memory. The thresholding mechanism, which mirrors

the CA1 by detecting whether or not the set is coherent, then closely informs when new

objects need to be selected from memory. Thus, the models provide a much more

detailed description of the neural process at a functional scope.

4.2.3. Coherence or spatial navigation
Mullally, Intraub, and Maguire (2012) found that patients with damage to the hip-

pocampus were unable to experience boundary extension. However, they were perfectly

able to describe an appropriate context for the scene or additional objects that would

likely be present in the scene if they were to mentally “take a step back.” Outside of the

boundary extension itself, they were also unable to determine where objects would be

spatially located relative to one another: to spatially integrate the scene. The subjective

quality of their imagined experience was also more limited, as given by lower self-report

scores. Superficially, this appears to be evidence of separation between Coherencer and

SCT. However, we argue that this is not the case.

First, when the authors are talking about spatial integration, they mean a scene that

possesses a spatial arrangement of the objects that is appropriate to the real world

(Maguire, personal communication). If an animal mouse is on a mouse pad on a desk

with a computer (i.e., there is an explicit, realistic, and describable relationship between

the mouse and every other object in the scene), it is spatially integrated. Second, the
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concept of spatial integration is related but distinct from Coherencer’s concept of coher-

ence. Spatial properties assume co-occurrence. What is unclear is whether the “additional

objects” that the patients could generate were coherent. Given our basic model of the pro-

cess, the association between spatial integration and coherence through co-occurrence,

and the fact that the patients could not spatially integrate, we predict that the additional

objects were incoherent (or had a very low coherence score) with one another. Neverthe-

less, Mullally, Intraub, and Maguire claim that there is some association.

As we will discuss in detail in one of the final sections on the coherence of spatial

integration, it is our suspicion that the collection of these objects as a whole would be

incoherent: The associations returned are actually the most strongly associated objects ini-

tially queried by Coherencer. They would appear qualitatively associated in that they

combine well with the original query, while still being of low coherence overall. The set

of responses given by patients in the assessment of coherence was not reported by Mul-

lally et al. (2012). Thus, one can only speculate at present.

4.3. Predictions and implications

As a cognitive model, Coherencer makes predictions concerning (a) serial processing,

(b) the distinction between memory retrieval and generation, and (c) spatial integration.

We discuss each of these predictions in turn.

4.3.1. Serial structure
Coherencer and similar incremental models predict that objects get placed into and

taken out of the object set during the coherence process in a serial manner. That is, the

image goes through several drafts before the final version is arrived at. An empirical test

of this might be challenging because we are typically conscious of only the final image.

From an imaging perspective, we do not yet know what subpatterns of activation in the

brain are corresponding to what objects, making it difficult to measure what objects are

placed and then removed from intermediate images.

However, it should be possible to map out, for a given individual, the most likely asso-

ciations with certain objects. Input contexts could then be designed that force certain

incoherent associations, which should appear, residually, in the output. For example, if

“mouse” is queried and it is most closely associated with “cheese” and “computer,” while

“computer” is most closely associated with “screen” and “bank,” one might expect to get

an output that is informed by all of these associations even if “mouse,” “cheese,” and

“bank” are the only ones actually selected. For example, the resulting output might be an

animal “mouse” eating “cheese” in a “bank” office that has computers. In this case,

“bank” would occur as a consequence of its strong association to “computer,” even

though it might have a weaker association to “mouse” than other labels.

Another important aspect of serial processes is that harder problems will take longer

than easier problems. When a problem is harder, more incorrect selections will be made

before the correct answer is selected and every additional incorrect answer in a serial pro-

cess requires more time. Thus, if generative processes in imagination are serial, then
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queries with more incoherent associations (e.g., a greater number of different contexts

that overlap) should take longer to process or at least take proportionally longer relative

to the number of incorrect selections one would expect to occur.18 This is empirically

testable.

4.3.2. Memory retrieval
In the hippocampus section, we briefly touched on some of the differences between

memory retrieval and generative imagination. Our suggestion was that the difference

between the two of them is a matter of degree. Both generate information lost during the

storage process using associative constraints from semantic memory. But normal memory

retrieval includes local (as opposed to global or general) constraints on the scene that are

temporally indexed (i.e., a particular place in time in one’s life; for a similar position, see

Tulving, 2002). Generative imagination is not required to use these constraints in the gen-

eral case, and so generative cognition can be more broadly applied across tasks (e.g.,

imagining fictional entities, which have no temporal index). This should be directly testa-

ble by comparing subjects with damage to regions more directly associated with recall of

the past (e.g., frontoparietal regions) and those with damage to the hippocampus alone

(Hassabis & Maguire, 2007). We therefore predict that hippocampal damage will have

broader effects corresponding to its more global, associative mechanisms (e.g., general

coherence), whereas damage to regions that perform recollection of the past should show

more local deficits related to constraints that are required for memory retrieval (e.g., tem-

poral indexing).

The basic theory that we are proposing is that coherence is derived from semantic

associations in memory. These semantic associations are originally abstracted through

hierarchical transitions of perceptual processes (e.g., through the functions of the visual

system) and then higher association areas in the brain (e.g., the hippocampus). In an

instance of imagination, these semantic associations are converted back to more concrete

representations that are common to episodic memory and more concrete imagery pro-

cesses. In this view, semantic and episodic memory retrieval, and mental imagery and

simulation exist on a continuum of abstraction with semantic memory on the abstract

end, episodic memory more concrete, and mental imagery the most concrete. The more

concrete the representation, the greater the contribution of the corresponding modal pro-

cesses (e.g., visual perception) as opposed to semantic structures distributed among more

disparate cortices (e.g., temporal lobe, frontal lobes). Generative imagination, then, cap-

tures in large part this conversion from conceptual representation to scene descriptions to

depictive processes of mental imagery.

4.3.3. The coherence of spatial integration
Another test of Coherencer’s extension of SCT requires the verbal data, like those col-

lected in Mullally et al. (2012)—of the responses of the patients and controls when asked

what objects would be present if they took a step back. The sets could then be input into

the model to assess their level of coherence. Coherencer predicts that their coherence

would be low. Patients with hippocampal damage will produce incoherent images in their
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imagination. If the results show that patients can generate combinations of objects with

high coherence, it would suggest that Coherencer needs to be analyzed at a finer scope.

Some of its processes would be shifted down the line of processing closer to memory,

while others (e.g., anticipatory functions) would remain within the functionality of the

hippocampus proper.

These differences are already present in the basic structure of Coherencer. When given

a query, the first step performed by the model is to seed its buffer with the objects that

most frequently co-occur with the query. The model assumes that given a query, human

memory is able to retrieve these high-frequency objects, corresponding to the initial, top-

n selection in the model. Consequently, the top-n selection process is already very proxi-

mate to memory while later anticipatory coherence processes are more distant. What one

would expect on the basis of this model is that patients with hippocampal damage would

use the objects recalled in this seeding process to form their response.19 All of these

objects would be locally coherent with the query (e.g., “mouse”). However, in as much

as the query could occur in multiple different contexts, the cluster of objects given will

have a low coherence: The patients will be relying on only the initial seeding as a conse-

quence of skipping the contextual refinement that Coherencer models.

4.4. Conclusion

This work has focused on a number of contributions to the understanding of cognition,

computation, and neuroscience. The overarching goal was to discuss in detail the notion

and mechanisms of coherence in terms of human visual imagination. Our results allow us

to tentatively conclude that Coherencer generates scenes that are more coherent than

models that assume independence between co-occurring items (e.g., top-n model) as well

as approaches that converge on a solution via parallel processes (e.g., Thagard’s connec-

tionist model). We can also tentatively conclude that co-occurrence probabilities are a

better association than holographic vectors—at least for the current evaluation—and that

better generative models (e.g., Coherencer) improve quality across association types (e.g.,

co-occurrence probabilities, holographic vectors).

Theoretically, we have shown that there is a great deal of overlap between the

approach used in Coherencer and other models of cognitive generation. In particular, we

showed that Coherencer is both very similar and more cognitively plausible than the C3

model created by Costello and Keane (2000). We also showed that Coherencer is consis-

tent with both the modal schematic indices of perceptual symbol system theory (Barsalou,

1999) and the amodal contextual constraints espoused of Thagard’s (2002) formal model

of coherence. Finally, we demonstrated that Coherencer is also consistent with contempo-

rary research on the hippocampus: a neural system that is implicated in both imagination

and cognitive generation, more broadly.

In sum, the Coherencer model does a great deal of work illustrating the types of sys-

tems that could viably be used to achieve coherence in the visual imagination. At present,

this work functions entirely at the computational and algorithmic levels of Marr and Pog-

gio’s (1976) trilevel hypothesis. Future work will focus on instantiating these insights at
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an implementational level—the underlying neural instantiation. From there, it will then

be possible to make subtler differentiations in the underlying coherence mechanisms in

the visual imagination.

Notes

1. We give a formal definition of the coherence problem in Vertolli and Davies

(2014). It has broad application in many areas of human cognition, much like

imagination, but the two topics do not perfectly overlap.

2. The constructive memory hypothesis suggests that this is probably true of episodic

memory as well (Conway & Pleydell-Pearce, 2000).

3. By selecting the label with the highest conditional probability, which is what the

top-n model does, we are effectively implementing a na€ıve Bayesian classifier. That

is, it assumes that the four selected labels are conditionally independent. It then

selects on the basis of conditional probability with the query.

4. It is worth noting that the human mind is flexible enough to create narratives that

make sense of hybrid combinations (e.g., a doctor administering an injection to an

injured surfer after a 911 call requiring police support). However, what is important

here is that the original experiences (i.e., the overall context of the corresponding

observer) do not provide sufficient information to warrant the creation of these

hybrid contexts. They are in some sense incoherent or fantastical relative to the

limited range of images SOILIE has. The life history of a given observer determi-

nes what is considered coherent in the total space of possible combinations, and

there is no agent-independent measure of whether a generated image is coherent. It

depends on the agent’s memory.

5. Note that although this link is usually bidirectional, the weight for each direction

will be different: The probability of label A given B is rarely equal to B given A.

Conditional probability is non-commutative as we stated above.

6. Pmean was found to be 0.097 for our dataset.

7. All formulas are vector implementations of those described by Thagard (2002). We

chose to use row vectors instead of column vectors as this more closely mirrors

Coherencer’s implementation.

8. h was selected based on preliminary analyses of the model.

9. Higher dimensional vectors better approximate orthogonality between the labels

(Cai, Fan, & Jiang, 2013). However, values near 1,000–2,000 have been shown to

have lower error rates in memory tasks. It is for this reason that we selected a

dimensionality of 1,000 (Rutledge-Taylor, Kelly, West, & Pyke, 2014).

10. Although the scores are low overall, it is worth keeping in mind that the models

are probably creating many coherent label sets that are not found in the test set.

This pattern continues for all subsequent tests.

11. We chose not to include the chi-square tables as they can easily be inferred from

Figure 4.
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12. The authors never fully define what a prototype is. However, they qualify that the

prototypes were either automatically generated from instances in the knowledge

base or hand coded.

13. Recall that parallel research on co-occurrence in machine learning suggests that

non-commutative approaches are more realistic (e.g., almost all weddings have

flowers but most flowers are not in weddings) and most models assume commuta-

tivity for mathematical or algorithmic convenience (Huang et al., 2012; Zhang &

Zhou, 2013).

14. Damasio (1989) explicitly uses the word “amodal” in his discussion of the conver-

gence zones. We expect that Barsalou (1999) avoids this language in order to

maintain a clean distinction between Damasio’s deeply perceptual amodality and

the traditional, transduced symbol approach. We reintroduce Damasio’s usage of

the term in order to more subtly differentiate our position from previous research,

as will become clear.

15. Note that in our framework, negative constraints are weak associations (i.e., two

labels inhibit one another if their co-occurrence is zero). We do not directly deal

with negative relationships in our dataset (e.g., that water could never occur as a

fluid in space in the absence of a strong heat source). However, we expect that

both of these properties will play an important role in future models.

16. However, we leave open whether simulated experience can occur in the absence

of this abstract to modal conversion.

17. It is worth noting that Squire is the main opposition to SCT and the main neuro-

science reference for both the associative regions of Barsalou (1999) and critique

of a memory-only view of the hippocampus by Slotnick, Thompson, & Kosslyn

(2012).

18. Parallel systems might also take longer to converge when there are more incoher-

ent solutions, but the relation would likely be more complex and it probably

would not be linear.

19. Sheldon, Romero, and Moscovitch (2013) found results that are similar to what

we are proposing. Their study showed that patients with medial temporal lobe

amnesia, which includes the hippocampus, were more likely to produce highly

similar words to the query than controls in a free association task with words that

had low semantic content (i.e., required the hippocampus). We suspect this is also

a top-n like functionality at work in a lexical rather than visual context. However,

preliminary exploration of the dataset has been challenging due to minimal over-

lap between the lexical categories and Coherencer’s training set.
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