next up previous
Next: Appendices Up: Visual Abstraction in Analogical Previous: Conclusion

Bibliography

1
Anderson, J. R., & Libiere, C. (1998) The Atomic Components of Thought. Lawrence Erlbaum Associates.

2
Barsalou, L.W. (1999). Perceptual symbol systems. Behavioral and Brain Sciences, 22, 577-609.

3
Beiderman I., & Cooper E. (1991). Priming contour deleted images. Cognitive Psychology, 23, 393-419.

4
Beveridge, M. & Parkins, E. (1987). Visual representation in analogical problem solving. Memory & Cognition. 15(3), 230-237.

5
Bhatta, S. R. & A. K. Goel (1997a). A functional theory of design patterns. In the Proceedings of IJCAI-97. pp294-300

6
Bhatta, S. and Goel, A. K. (1997b) Learning Generic Mechanisms for Innovative Design Adaptation. Journal of Learning Sciences, 6(4):367-394.

7
Bhatta, S. R. & Goel, A. K. (1997). Design patterns: A computational theory of analogical design. In the Proceedings of IJCAI-97 workshop on "Using Abstraction and Reformulation in Analogy."

8
Boden, M. (1990) The Creative Mind: Myths and Mechanisms. Basic Books: London.

9
Carbonell, J. (1986). Derivational analogy: A theory of reconstructive problem solving and expertise acquisition. In Michalski, R., Carbonell, J., & Mitchell, T. (Eds.) Machine Learning: An Artificial Intelligence Approach. Morgan Kaufman Publishers: San Mateo, CA.

10
Casakin, H, & Goldschmidt, G. (1999). Expertise and the use of visual analogy: Implications for design education. Design Studies, 20:153-175.

11
Chandrasekaran, B., Goel, A. & Iwasaki, Y. (1993). Functional Representation as a Basis for Design Rationale. IEEE Computer, 26(1):48-56.

12
Craig, D. L., Nersessian, N. J., & Catrambone, R. (in press). Perceptual simulation in analogical problem solving. To appear in: Model-Based Reasoning: Science, Technology, & Values (2002). Kluwer Academic: Plenum Publishers, New York.

13
Croft, D., & Thagard, P. (forthcoming). Dynamic imagery: A computational model of motion and visual analogy. In L. Magnani (Ed.), Model-based reasoning: Scientific discovery, technological innovation, values. New York: Kluwer/Plenum.

14
Davies, J., & Goel, A. K. (2001). Visual analogy in problem solving. Proceedings of the International Joint Conference on Artificial Intelligence 2001. pp 377-382. Morgan Kaufmann publishers.

15
Davies, J., Nersessian, N. J., & Goel, A. K. (2002). Visual models in analogical problem solving. To appear in Foundations of Science 2002, special issue on Model-Based Reasoning: Visual, Analogical, Simulative. Magnani, L. & Nersessian, N. J., Eds.

16
Duncker, K. (1926). A qualitative (experimental and theoretical) study of productive thinking (solving of comprehensible problems). Journal of Genetic Psychology. 33:642-708.

17
Evans, T. G. (1968). A heuristic program to solve geometric analogy problems. In Semantic Information Processing edited by Minsky, M. MIT Press, Cambridge, MA.

18
Falkenhainer, B. (1988). Learning from physical analogies. Department of Computer Science, University of Illinois at Urbana-Champaign technical report UIUCDCS-R-88-1479.

19
Falkenhainer, B., K. D. Forbus, & D. Gentner (1990). The Structure mapping engine: algorithm and examples. Artificial Intelligence (41) 1-63.

20
Farah, M. J. (1988) The neuropsychology of mental imagery: Converging evidence from brain-damaged and normal subjects. In J. Stiles-Davis, M. Kritchevsky, and U. Bellugi (Eds.) Spatial Cognition- Brain bases and development. 33-59. Hillsdale, NJ. Erlbaum.

21
Ferguson, R. W. (1994). MAGI: Analogy-based encoding using regularity and symmetry. In Ram, A. & Eiselt, K. (Eds.), Proceedings of the Sixteenth Annual Conference of the Cognitive Science Society Atlanta, GA: Lawrence Erlbaum Associates, 283-288.

22
Ferguson, R. W. & Forbus, K. D. (1998) Telling juxtapositions: Using repetition and alignable difference in diagram understanding. In Holyoak, K., Gentner, D., & Kokinov, B. (Eds.) Advances in Analogy Research, 109-117. Sofia: New Bulgarian University.

23
Ferguson, R. W., & Forbus, K. D. (2000). GeoRep: A flexible tool for spatial representation of line drawings, Proceedings of the 18th National Conference on Artificial Intelligence. Austin, Texas: AAAI Press.

24
Gentner, D. (1983). Structure-mapping: A theoretical framework for analogy. Cognitive Science, 7, pp 155-170.

25
Gick, M. L. & K. J. Holyoak. (1980). Analogical problem solving. Cognitive Psychology. 12, 306-355.

26
Gick, M. L. & K. J. Holyoak. (1996). LISA: A computational model of analogical inference and schema induction. In G. W. Cottrell (Ed.), Proceedings of the Eighteenth Annual Conference of the Cognitive Science Society (pp. 352-357). Atlanta, GA: Lawrence Erlbaum Associates.

27
Glasgow, J. & Papadias, D. (1998). Computational imagery. In Thagard, P. Mind Readings. Cambridge, MA: MIT Press.

28
Glasgow, J., Narayanan, N. H., Chandrasekaran, B. (1995). Diagrammatic Reasoning: Cognitive and Computational Perspectives. AAAI Press/MIT Press: Cambridge, MA.

29
Goel, A. K. (1991a) Model Revision: A Theory of Incremental Model Learning. Proc. Eighth International Conference on Machine Learning (ICML-91), Chicago, June 1991, Los Altos, CA: Morgan Kaufmann, pp. 605-609.

30
Goel, A. K. (1991) A Model-Based Approach to Case Adaptation. Proceedings of the Thirteenth Annual Conference of the Cognitive Science Society. Chicago, August 1991, Hillsdale, NJ: Lawrence Erlbaum, pp. 143-148.

31
Goel, A., Bhatta, S. & Stroulia, E. (1997). KRITIK: An early case-based design system. In: Issues and Applications of Case-Based Design. Maher, M. L. and Perl, P., eds., Erlbaum, Hillsdale, NJ., pp. 87-132.

32
Gooding, D. C. (1994) Experiment and the Making of Meaning. Dordrecht, Kluwer Academic Publishers.

33
Griffith, T. W., Nersessian, N. J. & Goel, A. K. (1996). The role of generic models in conceptual change. In Proceedings of the Eighteenth Annual Conference of the Cognitive Science Society, Lawrence Erlbaum, Mahwah, NJ.

34
Griffith, T. W., Nersessian, N. J., & Goel, A. K. (2000). Function-follows-form transformations in scientific problem solving. Proceedings of the Twenty-Second Annual Conference of the Cognitive Science Society. Lawrence Erlbaum, Mahwah, NJ.

35
Hammond, K. J. (1990). Case-Based Planning: A Framework for Planning from Experience. Cognitive Science, 14(4):385-443.

36
Hayes, J. R. (1989). The Complete Problem solver. 2nd ed. Hillsdale, NJ:Erlbaum.

37
Hofstadter, D. R. & Mitchell, M. (1995). The copycat project: A model of mental fluidity and analogy-making. In Hofstadter, D. and the Fluid Analogies Research group, Fluid Concepts and Creative Analogies. Basic Books. Chapter 5: 205-267.

38
Holyoak, K. J., & Thagard, P. (1989). A computational model of analogical problem solving. In S. Vosniadou & A. Ortony (Eds.), Similarity and analogical reasoning. Cambridge: Cambridge University Press. 242-266.

39
Holyoak, K. J., & Thagard, P. (1989). Analogical mapping by constraint satisfaction. Cognitive Science 13, 295-355.

40
Holyoak, K. J. & Thagard, P. (1997). The analogical mind. American Psychologist.52(1)35-44.

41
Kellman, P. J. & Arterberry, M.E. (1998). Chapter 5: Object Perception. In The cradle of knowledge: Development of perception in infancy, edited by P. J. Kellman & M. E. Arterberry. Cambridge: M.I.T. Press.

42
Kolodner, J. L. (1993). Case-Based Reasoning, Morgan Kaufmann Publishers, San Mateo, CA.

43
Kosslyn, S. M. (1994) Image and Brain: The Resolution of the Imagery Debate. MIT Press, Cambridge, MA.

44
Kriz, S. (2002). Understanding Simultaneity and Causality in Static Diagrams versus Animation. Poster Session: Cognitive Aspects of Diagrammatic Representation and Reasoning, Diagrams 2002.

45
Landaur, T. K. (1998). Learning and Representing verbal meaning: The latent semantic analysis theory. Current Directions is Psychological Science, 7 (5) pp 161-164.

46
Lenat, D. & Guha, R. (1990). Building Large Knowledge Based Systems: Representation and Inference in the Cyc Project. Addison-Wesley Publishing. Reading, MA.

47
Maxwell, J. C. (1861-2). On physical lines of force. In The Scientific Papers of J. C. Maxwell, Niven, D. ed. Cambridge: Cambridge University Press, 1890. Reprinted in 1952, New York: Dover Publications Vol. 1, pp. 451-513.

48
McGraw, G. & Hofstadter, D. R. (1993) Perception and Creation of Alphabetic Style. In Artificial Intelligence and Creativity: Papers from the 1993 Spring Symposium, AAAI Technical Report SS-93-01, AAAI Press.

49
Medin, D. & Ross, B. (1990) Cognitive Psychology. Harcourt Brace: New York.

50
Meuller, E. (1998). Panel discussion: "Evaluating Representations of Common Sense". Fifteenth National Conference on Artificial Intelligence (AAAI 1998). July 30. Organizer: Douglas B. Lenat.

51
Miller, A. I. (1984. Imagery in Scientific Thought: Creating Twentieth Century Physics. Boston: Birkhauser.

52
Monaghan, J. M. & Clement, J. (1999). Use of computer simulation to develop mental simulations for understanding relative motion concepts. International Journal of Science Education 21(9), 921-944.

53
Nersessian, N. J. (1984) Faraday to Einstein: Constructing Meaning in Scientific Theories. Kluwer, Dordrecht, pp. 68-93.

54
Nersessian, N. J. (1992). How do scientists think? Capturing the dynamics of conceptual change in science. In Giere, R. N. (ed.)Cognitive Models of Science. University of Minnesota Press. Minneapolis, MN.

55
Nersessian, N. J. (1994a). Opening the black box: Cognitive science and the history of science. In: Constructing Knowledge in the History of Science. Osiris, Thackray, A., ed., 10:194-214.

56
Nersessian, N. J. (1994b). Abstraction via generic modeling in concept formation in science. Georgia Institute of Technology Cognitive Science Technical Report 94/22. To appear in: Idealization and Abstraction in Science. Jones, M. R. and Cartwright, N., eds., Amsterdam: Editions Rodopi, in press.

57
Nersessian, N. J. (2001). Maxwell and 'the method of physical analogy': Model-based reasoning, generic abstraction, and conceptual change. In: Reading Philosophy of Nature: Essays in the history and philosophy of science and mathematics to honor Howard Stein on his 70th Birthday. D. Malamet, ed., LaSalle, IL: Open Court, in press.

58
Pedone, R., Hummel, J. E., & Holyoak, K. J. (2001). The use of diagrams in analogical problem solving. Memory & Cognition, 29, 214-221.

59
Prabhakar, S. & Goel, A. (1996) Learning about novel operating environments: Designing by adaptive modelling. Artificial Intelligence in Engineering Design, Analysis and Manufacturing, Special Issue on Machine Learning, 10:136-142.

60
Pylyshyn, Z. W. (1978). Imagery and artificial intelligence. from Savage, C. W. (Ed.), Perception and Cognition. Issues in the Foundations of Psychology, Minnesota Studies in the Philosophy of Science, vol. 9, Minneapolis: University of Minnesota Press) 19-55.

61
Richardson, D. C., Spivey, M. J., Edelman, S., & Naples, A. J. (2001). ``Language is spatial'': Experiemental evidence for image schemas of concrete and abstract verbs. in Proceedings of the Twenty-third Annual Meeting of the Cognitive Science Society. 873-878, Erlbaum: Mahwah, NJ.

62
Schank, R. C. (1972). Conceptual Dependency: A Theory of Natural Language Understanding, Cognitive Psychology, (3)4, 532-631.

63
Schrager, J. (1990). Commonsense perception and the psychology of theory formation. In Shrager, J. & Langley, P. (Eds.) Computational Models of Scientific Discovery and Theory Formation. Morgan Kaufman, San Mateo, CA. 437-470.

64
Shepard, R. & Cooper, L. (1982). Mental Images and their Transformations Cambridge, MA: MIT Press.

65
Sussman, G. J. (1975). A Computational Model of Skill Acquisition. American Elsevier, New York.

66
Thagard, P. & Hardy, S. (1992) Visual thinking and the development of Dalton's atomic theory. Proceedings of the Ninth Canadian Conference on Artificial Intelligence. Vancouver. 30-37.

67
Thagard, P., Gochfeld, D., & Hardy, S. (1992). Visual analogical mapping. In proceedings of the 14th Annual Conference of the Cognitive Science Society. Hillsdale, Erlbaum. 522-527.

68
Veloso, M. M. & Carbonell, J. G.(1993). Derivational Analogy in PRODIGY: Automating Case Acquisition, Storage, and Utilization. Machine Learning, 10(3):249-278.

69
Winston, P. H. (1992). Artificial Intelligence. Addison-Wesley Publishing, Reading, Massachusetts.

70
Yarlett, D. & Ramscar, M. (2000). Structure-mapping theory and lexico-semantic information. In Gleitman, L. R., and Joshi, A. K. (Eds.) Proceedings of the Twenty-Second Annual Conference of the Cognitive Science Society. Lawrence Erlbaum. Mahwah, NJ. pp.571-576.



Jim Davies 2002-09-12