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Abstract. Visual representations seem to play a significant role in many creative
analogies. In this paper, we describe a specific role of visual representations:
two situations that appear dissimilar non-visually may appear similar when re-
represented visually. We present a computational theory of multi-modal analogy
in which visual re-representation enables analogical transfer in cases where there
are ontological mismatches in the non-visual representation. \We have developed
a computer program, called Galatea, that implements a core part of our theory:
it transfers problem-solving procedures between analogs containing only visual
knowledge. In this paper, we describe both how Galatea accomplishes the transfer
task using only visual knowledge and how it might be extended to support visual
re-representation in multi-modal analogies.

1 Introduction

A central issue for research on creativity is that any solution to a problem has to start
from what we already know. So, how is it possible to create novel solutions? There is
ample evidence that analogy plays a central role in finding creative problem solutions,
and that many of the most creative analogies involve cross-domain transfer [Nersessian,
1992; 2002; Bhatta and Goel, 1997a; 1997b; Thagard, 1992; Darden, 1983; Gentner and
Stevens, 1983; Boden, 1990]. But how does one recognize similarity across domains
and use it to arrive at a solution?

Clearly some kind of abstraction processes are involved in transferring problem
solutions across domains. Most of the literature on analogy considers abstraction pro-
cesses involving non-perceptual, amodal (e.g., linguistic) representations. We hypothe-
size that for some problems, the abstraction processes involve re-representation, chang-
ing the representation from an amodal format to a modal (e.g., visual) format. In these
cases it is the similarity in the modal representation that enables analogical transfer.

To take an example, imagine that a reasoner is trying to figure out how to put batter-
ies into a tape recorder, and there is an opportunity to use a source case in which film is
put into a camera. Since film is a different entity from battery, and tape-recorder is a dif-
ferent entity from camera, analogical retrieval, mapping, and transfer will be hindered
unless the reasoner can find some similarity between them. If the entities referred to are
different things in the ontology of the representation language, then there is a mismatch
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Fig. 1. This Figure illustrates Galatea’s input and output in the abstract. The knowledge states
in the source case are depicted as ovals along the top of the figure. The knowledge states are
represented as s-images. Transformations between the states in the figure are depicted as arrows.
The target problem is depicted as the first oval along the bottom. All things in the gray box are
output by Galatea.

between the semantics of representations of the two situations. This is sometimes called
the ontological mismatch problem.

One way the two situations in the above example are similar is that they visually
resemble each other: the batteries and the film canister are shaped like cylinders, and
the tape recorder and the camera are shaped like rectangular prisms. In this example,
the problem constraints pertain to the shape of the objects involved. Thus the visual
similarity of the tape recorder and the camera (both may have cylindrical holes) is more
relevant to the problem than, say, their functional similarity as recording devices, be-
cause their shapes have more to do with the placement of batteries and films than their
functions do.

On our hypothesis, turning a non-visual representation into a visual one (visual in-
stantiation) is one mechanism for resolving ontological mismatches. When a reasoner
encounters an ontological mismatch in the non-visual representations of the target prob-
lem and the source case, it may dynamically create visual representations of the problem
and the case, and transfer problem solving strategies (or solutions) between the gener-
ated visual analogs. The final solution of the non-visual problem involves specifying
the visual representation back into non-visual form.

Note that a critical part of this process is transfer of problem solving strategy be-
tween two visual analogs. Thus, if our hypothesis is correct, it should be possible to
transfer problem solving procedures from a source case to a target problem using repre-
sentations that are purely visual. Therefore, the first core task in developing and evalu-
ating our theory of multi-modal analogy is to develop and evaluate a computer program
that can accomplish the transfer task using only visual knowledge.

Indeed, although above we outlined the case for visual re-representation in creative
analogies, in many situations analogical problem solving may use visual representations
from the outset. For example, problems in many design domains contain drawings,



diagrams, animations, photographs, videos, etc. Instructions for assembling a complex
artifact, for example, often are presented to people in a completely diagrammatic from.
Thus, establishing transfer of problem solutions using visual knowledge alone not only
supports our theory of multi-modal analogies but also is an important task by itself.

This paper, then, has two goals: (i) describe our theory of visual re-representation
in multi-modal analogies and (ii) describe an operational computer program called
Galatea that implements the transfer task in visual analogy. We begin with a descrip-
tion of Galatea that addresses visual analogy, and then show how it can be extended to
visual re-representation in creative analogies.

We will use Duncker’s classic fortress/tumor problem [Duncker, 1926] as a running
example throughout this paper.

2 Visual Analogy: Transfer

Problem solving in the fortress story involves a series of knowledge states and transfor-
mations between them. A knowledge state specifies information about a specific config-
uration of elements and parameters that characterize the problem, and transformations
are operations that change the configuration in a state and lead to a new knowledge state.
The first knowledge state corresponds to the initial description of the problem. Starting
from the first knowledge state in the fortress story, the first transformation is to break
the army up into smaller armies. This leads to the second knowledge state containing
smaller armies. The second transformation is to move the armies to different roads, and
SO on.

This analysis leads to two constraints on the visual representation of the source case
containing the fortress story. First, a knowledge state will be represented as a diagram,
and the transformations will be operations that can operate on the visual primitives
in the diagram representing a state. Further, two successive states will be connected by
only one primitive transformation. Second, visual information will be represented using
symbolic, structured, descriptive representations. This is differentiated from depictive
representations (e.g., bitmaps), where a depictive representation only “specifies the lo-
cations and values of points in space” [Kosslyn, 1994]. The symbolic representation
provides the standard benefits of discreteness, abstraction, ordering, and composition.

2.1 Galatea: A Computer Implementation

Galatea is an operational program written in LISP. It implements the transfer of problem
solving procedures in visual analogies. Figure 1 illustrates Galatea’s input and output in

! Experimental participants read a story about a general who must overthrow a dictator in a
fortress. His army is poised to attack along one of many roads leading to the fortress when the
general finds that the roads are mined such that large groups passing over will set them off.
To solve the problem, the general breaks the army into smaller groups and they take different
roads simultaneously and arrive together at the fortress. Participants are then given a tumor
problem, in which a tumor must be destroyed with a ray of radiation, but the ray will destroy
healthy tissue on the way in, Kkilling the patient. The analogous solution is to have several
weaker rays converging on the tumor [Duncker, 1926].
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Fig. 2. This Figure shows Galatea’s input and output for the Duncker problem. The top series of
s-images in the Figure shows the visual representation of the solved fortress problem. The bottom
series of s-images shows the target tumor problem. The bottom left s-image is the initial state of
the tumor problem. The darkly shaded box shows the output of the system.



the abstract. Each knowledge state is represented as a symbolic image or s-image. The
reasoner takes as input a source case, an initial knowledge state in the target problem,
and an analogical mapping between the s-image representing the first knowledge state
in the source case and the initial knowledge state in the target problem. The source case
is a complete problem solving episode. The system transfers the visual transformations
from the source to the target, creating new target s-images and analogical mappings
along the way. Figure 2 illustrates Galatea’s input and output for the Duncker problem.

Galatea is intended to be able to operate on problems involving physical systems. It
presently works on three problems: The Duncker problem, a case of scientific analogical
reasoning by James Clerk Maxwell [Davies et al., 2003], and a cake/pizza problem in
which a single pizza must be distributed among several people (as briefly described
below).

2.2 Knowledge and Representation

Covlan (for Cognitive Visual Language) provides an ontology of visual primitives and
transformations. Table 1 shows Covlan’s ontology of transformations.

Table 1
Transformation name|

move-to-location
move-to-touch

arguments

object, new-location
object, object2, new-location

move-above object, object2
move-to-right-of object, object2
move-below object, object2

move-to-left-of

object, object2

move-in-front-of

object, object2

move-off-s-image

object, location

move-to-set

object, object2

rotate

object, direction

start-rotating

object, direction

stop-rotating object
start-translation object, direction
stop-translation object

set-size object, new-size
add-element object, location (optional)
remove-element object
decompose object, number-of-resultants, type
scale object, new-size

Each transformation is a function with arguments. All transformations operate on
some object, and many have additional arguments as well. These transformations im-
plement normal graphics manipulations such as translation (move-to-location, move-to-
touch, move-above, move-to-right-of, move-to-left-of, move-below), rotation (rotate),



and scaling (set-size). In addition there are transformations for adding and removing el-
ements from the s-image (add-element, remove-element). Making topological changes
of this kind to imagined physical systems has been shown in earlier work to be useful
in problem solving [Griffith et al., 2000; 1994].

Certain transformations (start-rotating, stop-rotating, start-translation, stop-translation)
are changes to the dynamic behavior of the system under simulation. For example, ro-
tate changes the orientation of an element once, as one might turn a chair to face a
window. Such a transformation changes the position of an element between states. In
contrast start-rotating sets an element in motion, as one might spin a top. A square that
has been affected by this transformation would not simply be rotated in the next state,
but actively rotating.

Table 2
Primitive Element name] attributes
polygon location, size
rectangle location, size, height, width, orientation
triangle location, size, height, width, orientation
ellipse location, size, height, width, orientation
circle location, size, height
arrow location, length, start-point, end-point, thickness
line location, length, end-pointl, end-point2, thickness
point location
spline location, start-point, mid-point, end-point, thickness
text location, length, letters

Covlan’s ontology of primitive visual elements (Table 2) contains: polygon, rectan-
gle, triangle, ellipse, circle, arrow, line, point, spline, and text. The elements are frame-
like structures with slots that can hold values. For example, a triangle has a location,
size, height, width, and orientation. All elements have a location, which is an absolute
location on an s-image (e.g. top, right).

In the fortress problem, the fortress is represented as a spline, the army as an arrow
with thickness of very-thick. Likewise, in the tumor problem, the ray of radiation is
represented as an arrow with thickness of very-thick, and the tumor is represented as a
spline (see Figure 2.) Two s-images are generated during processing; the final generated
s-image of the tumor problem is represented in Figure 3.

In the fortress/tumor example, after the decompose transformation generates a num-
ber of smaller armies (by transforming a thick arrow into thinner arrows), they must be
dispersed to the various roads, in various locations in the image. In a previous version
of Galatea [Davies and Goel, 2001; Davies et al., 2003] each army arrow was moved-
to-location individually to each road line. This solution was brittle because the number
of roads to which the armies moved needed to match exactly the number of body areas
the weaker rays moved to in the target.

The current version of Galatea uses sets to address this problem. By grouping the
armies, roads, rays, and body parts into their own sets, the system adapts the solu-
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Fig. 3. This Figure illustrates a portion of Galatea’s representation of the third s-image in the
tumor series illustrated in Figure 2. The third s-image in the tumor series represents the final
solution generated by Galatea as a result of analogical transfer. The representation consists of a
series of propositions, indicated in the Figure as labeled arrows connecting two elements. The
tumor-s-image3 is connected with a has-element relation to each element in the s-image. The
elements in the s-image each have a location and are connected to a primitive visual element
type with a looks-like relation. Each ray, represented as an arrow, also has a thickness —in this s-
image, thin. Each arrow also has start and end points, also with locations (not shown in the figure).
The s-image is connected to the s-image before it with a transform-connection. Not shown in the
Figure are the maps that connect the elements of this s-image to the previous s-image, as well as
the maps to the analogous source s-image.



tion in the source analog to accommodate differing numbers of any of these elements.
Rather than using the move-to-location transformation on each army, it implements a
new transformation move-to-set to the set of armies. The argument to this function is a
set of roads. The move-to-set function takes one set and distributes its members around
the locations of another set.

2.3 Inference and Processing

Galatea focuses on the transfer and adaptation stage of analogy. In particular, it adapts
and transfers each transformation in the source problem to the target.

A transformation, such as decompose, can be used to turn any primitive element
into an arbitrary number of resultants, which is taken as an argument. An argument of
a transformation can be an instance of one of three cases. First, the argument can be a
literal, like the number 4 or the location bottom. Literals are translated directly.

Second, the argument could be a primitive element member of the source s-image.
In this case, the transfer procedure operates on the analogous object in the target s-
image. For example, in the fortress problem, the soldier-paths are moved to the roads.
When move-to-set is transferred to the tumor problem, the argument set-of-roads is
adapted to the analogous set-of-body-areas.

In the third case, the argument can be a function. Since this case does not occur in
the Duncker problem, we will use another example to describe it. Let us suppose that a
reasoner needs to feed six people with one Sicilian sheet pizza. An analog in memory
of cutting a sheet cake for four people is used to generate a solution. Transfer is still
difficult because somehow the 4 in the cake analog must be adapted to the number 6
in the source analog. Knowing how many pieces into which to cut the cake or pizza
depends on the number of people in the problem. Since a set is different from a count of
the set’s members, some notion of count is needed. The use of functions as arguments to
transformations helps address this problem. The cake analog is represented with a func-
tion that counts the number of people as its argument for the decompose transformation.
This function has an argument of its own, namely the set of cake eaters, which during
adaptation adapts into the set of pizza eaters. When the transformation is applied to the
pizza, it counts the members of the set of people in the pizza problem (which results in
six), and produces six pieces of pizza.

2.4 Algorithm

1. Identify the first s-images of the target and source cases.

2. ldentify the transformations and associated arguments in the current s-image
of the source case. This step finds out how the source case gets from the current
s-image to the next s-image. In our example, the transformation is decompose, with
four as the number-of-resultants argument (not shown).

3. ldentify the objects of the transformations. The object of the transformation is
what object the transformation acts upon. For the decompose transformation, the
object is the soldier-pathl (the thick arrow in the top left s-image in Figure 2.)



4. ldentify the corresponding objects in the target problem. Rayl (the thick ar-
row in the bottom left s-image) is the corresponding component of the source
case’s soldier-pathl, as specified by the correspondences between the s-images
(not shown). A single object can be mapped to any number of other objects. If
the object in question is mapped to more than one other object in the target, then
the transformation is applied to all of them in the next step.

5. Apply the transformation with the arguments to the target problem compo-
nent. A new s-image is generated for the target problem (bottom middle) to record
the effects of the transformation. The decompose transformation is applied to the
rayl, with the argument four. The result can be seen in the bottom middle s-image
in Figure 2. The new rays are created for this s-image. Adaptation of the arguments
can happen in three ways, as described above: If the argument is an element of
the source s-image, then its analog is found. If the argument is a function, then the
function is run (note that the function itself may have arguments which follow the
same adaptation rules as transformation arguments). Otherwise the arguments are
transferred literally.

6. Map the original objects to the new objects in the target case. A transform-
connection and mapping are created between the target problem s-image and the
new s-image (not shown). Maps are created between the corresponding objects. In
this example it would mean a map between ray1 in the left bottom s-image and the
four rays in the second bottom s-image. This system does not solve the mapping
problem, but a mapping from the correspondences of the first s-image enable the
mappings for the subsequent s-images to be automatically generated.

7. Map the new objects of the target case to the corresponding objects in the
source case. Here the rays of the second target s-image are mapped to soldier paths
in the second source s-image. This step is necessary for the later iterations (i.e. go-
ing on to another transformation and s-image). Otherwise the reasoner would have
no way of knowing on which parts of the target s-image the later transformations
would operate.

8. Check to see if goal conditions are satisfied. If they are, exit, and the problem
is solved. If not, and there are further s-images in the source case, set the current
s-image equal to the next s-image and go to step 1. If there are no further s-images,
then exit and fail. Goal conditions are represented non-visually [Davies and Goel,
2001].

Galatea shows that visual knowledge alone, with no amodal knowledge, is suffi-
cient for enabling analogical transfer, supporting a central hypothesis of our theory of
creative analogies. It suggests a computational model of analogy based on dynamic
visual knowledge that complements traditional models based on amodal knowledge.
Although Galatea does not yet address the issues of retrieval and mapping, other imple-
mented computer programs have (e.g. [Yaner and Goel, 2002; Ferguson, 1994]). Thus,
we confidently conjecture that visual knowledge alone can enable the first three stages
of analogy: retrieval, mapping, and transfer.



3 Multi-Modal Analogies: Re-Representation

Galatea addresses a core part of our theory of creative analogies: analogical problem-
solving transfer using only visual knowledge. Our general theory of creative analogies
suggests why and how visual reasoning is useful even with cases whose representa-
tions need not be visual. There is psychological evidence that humans make use of vi-
sual information when doing problem solving in general [Schrager, 1990; Farah, 1988;
Casakin and Goldschmidt, 1999; Monaghan and Clement, 1999], but the details of what
makes visual knowledge useful for analogy in natural and artificial reasoners is largely
unknown.

Another way to frame this problem is that we do not know under what conditions
it is useful for a reasoner to generate and process a visual representation. Our work
on Galatea suggests that one reason to use visual representations is that ideas that are
semantically distant with a non-visual representation (e.g. a marching army and a ray of
radiation) may be semantically closer with a visual representation. Turning non-visual
representations into visual ones (a process we call visual instantiation) is one possible
solution to the ontological mismatch problem.

3.1 The Ontological Mismatch Problem

One kind of ontological mismatch occurs when the symbols representing two similar
things are not the same. In a non-visual representation of the Duncker problem, the ray
and the army are different symbols. Thus, without some notion of similarity between
them, they cannot be aligned, which hinders analogical problem solving.

Ontological mismatches can be encountered during analogical retrieval, mapping,
or transfer. In the retrieval stage, ontological mismatches can hinder retrieval of ap-
propriate analogs. Psychological studies show that analogs are retrieved from memory
based on surface similarity of the target analog to the retrieved source [Falkenhainer et
al., 1990]. Similar ideas represented with different symbols will fail to appear similar
to the reasoner.

Upon retrieval of an analog, the reasoner might have trouble with mapping ideas
that need to be aligned, such as the tumor with the fortress, because they are represented
with different symbols.

Even if this mapping problem is overcome, the reasoner could still have a problem in
transfer of the solution strategy. Suppose that the reasoner knows of a solved problem
which involves breaking up an army into smaller groups. The army is represented as
a group of constituent soldiers. The target problem involves a ray of radiation which
must be turned into a number of rays with less intensity. The ray might be represented
as energy, with a number associated with its intensity, a representation that serves some
other task (e.g. so that numeric intensities can be added). Thus, not having anticipated
that the ray and army might need to be aligned, they could have been encoded with
incompatible representations. The transformation applied to the army will not work on
the ray because the representation of the ray, in this example, does not have constituent
parts: breaking something into parts is different from dispersing energy.

The point of this analysis is to show that a reasonable non-visual representation can
fail for transfer in analogical problem solving. It is possible to represent this problem
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with no ontological mismatches (e.g. [Holyoak and Thagard, 1989] do), but ontological
mismatches are bound to occur in any large knowledge base [Lenat and Guha, 1990].

3.2 Resolution of Ontological Mismatches

In our theory, ontological mismatches encountered in non-visual representations are
resolved by providing a level of visual abstraction at which two different symbols are
similar. This process of visual instantiation offers a means for resolving ontological
mismatches different from, say, using a type hierarchy. For example, the ray in the
fortress and the tumor may not be under any same superordinate category. Representing
them both as splines, however, shows a similarity between these distant concepts. This
kind of visual abstraction works especially well in conditions under which the visual
properties of the objects represented are related to the properties relevant to the current
task (See Figure 4.)

For the retrieval task, the reasoner may visually instantiate the elements in question,
and find similarity through comparison of the visual symbols. For example, the ray and
the soldier-path might both visually instantiate to arrows, at which point the reasoner
can identify the similarity.

The mapping stage outputs alignments between elements of the source and target
initial problem states. As in retrieval, visual instantiation of the target and the source
can help align the symbols. For example, visual instantiation of the tumor and fortress
as splines abstracts them to the same symbol, enabling alignment.

In the transfer task, the transformations that connect the different knowledge states
in the source are transferred to the target. The elements in the target problem that a trans-
ferred transformation affect are analogous to the elements that get affected in the source.
Sometimes, however, there can be problems in transfer due to ontological mismatches.
For example, as discussed above, trying to transfer the break-up transformation to the
ray in the Duncker problem will not work because the ray does not have constituent
parts.

Visual representations can be used as an intermediate level of abstraction in the
transfer task as well. Let us suppose that in solving the Duncker problem, both the
army and the ray get visually instantiated as a line. The break-up transformation, too,
gets visually instantiated as the decompose visual transformation. In the generated vi-
sual representation, the transfer of the transformation occurs without hindrance because
decompose can apply equally well to both lines.

In Figure 5, the top two ovals represent the first two knowledge states of a non-visual
representation of the source case in the Duncker problem, connected with a break-up
transformation. Also input is the initial state of the target problem and the analogical
mapping between them. The grayed area is generated by the reasoner.

The reasoner first tries to transfer the break-up transformation directly, but cannot
because break-up, as mentioned above, only works on things with constituent parts. At
this stage, the reasoner generates a visual representation of the solved source case and
the target problem. For example, the large marching army and the ray are represented
as thick arrows. All the elements of these analogs are turned into visual primitives,
including the break-up transformation, which instantiates into decompose, which is a
visual transformation that takes a visual object and turns it into smaller objects of the
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Fig. 4. This Figure illustrates the computational process for multi-modal analogies. First the cur-
rent last knowledge state in the target problem is evaluated. If it satisfies the goal conditions, then
the reasoner stores the solution and exits. Else it may elect to use analogy to address the prob-
lem. Retrieval can occur non-visually, but failing that, the reasoner may generate s-images for
the target problem, and try to retrieve based on those (processes in the top shaded box are visual
processes). When a source case is retrieved, the reasoner attempts to map the elements. Again,
the generated s-images can be used to facilitate mapping. With a mapping in place, the reasoner
may attempt to transfer the solution from the source to the target by transferring operators and
applying them. If the transfer processes fails due to an ontological mismatch, the reasoner may
use generated s-images to resolve the conflict. The procedure transformations are re-specified
back into non-visual operators, and are evaluated in the non-visual representation.
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Fig.5. This Figure illustrates visual re-representation in the transfer stage of analogical prob-
lem solving. When the reasoner cannot directly transfer the break-up transformation from the
source case to the target problem, it creates a visual abstraction of the knowledge states and
transformations. The non-visual break-up transformation instantiates to the visual transformation
decompose. Transfer of decompose from the visual source to the visual target is now possible.
After the transfer, the reasoner specifies the transferred visual transformation back into the ap-
propriate non-visual transformation, distribute. Galatea implements the processing in the bottom

half of this figure.
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same type. In this case, it turns the thick lines in the visual target into thin lines. Unlike
break-up, the decompose function transfers from the source to the target, because both
break-up and distribute share the same visual abstraction, decompose.

Now that the problem is solved in the visual representation, it is re-specified back
into the non-visual representation. This can be done because decompose translates not
only into break-up but also into distribute, which takes some intensity value and breaks
it up into some number of elements with a weaker intensity.

4 Discussion

The ontological mismatch problem has been identified and extensively studied in the
context of large knowledge bases, especially inter-operable knowledge systems. Vari-
ous models of analogical problem solving resolve the ontology mismatch problem in
different ways.

Case-based reasoning appears to assume that memory is so massively populated and
well organized and the retrieved case so similar to the target problem that ontological
mismatches simply will not occur — if the source is so similar to the target that it
need only be “tweaked” to get the desired solution, then there is simply no ontological
mismatch. In contrast, Yarlett and Ramscar [Yarlett and Ramscar, 2000] specifically
address the ontological mismatch problem in analogical reasoning. Their system takes
two different symbols and evaluates their similarity using Latent Semantic Analysis
[Landaur, 1998], a database of correlations between all words representing their co-
occurrence in a text. The analogical mapper treats as identical any pair of symbols
which correlate above a specified threshold. In our theory, objects and operations that
appear different in a non-visual representation may look more similar in a different,
visual representation.

The literature on visual analogy is small but rapidly growing. ANALOGY is an early
computer program that performed visual analogies [Evans, 1968]. It solved multiple
choice visual analogy problems of the kind found on intelligence tests (e.g. A:B::C:?).
It does this by describing how to turn A into B, and then testing which choice is a best
fit for how C might be turned in a similar manner.

Although the structure-mapping theory does not specifically address the ontolog-
ical mismatch problem, it is applicable to both non-visual and visual representations.
According to this theory [Falkenhainer et al., 1990], two ideas are considered similar
if the idea’s properties and the relations between it and surrounding elements are the
same as the relations between another idea and its surrounding elements. For exam-
ple, an electron is similar to a planet because it revolves around some body (nucleus or
star). Galatea’s use of multiple kinds of arguments for transformations (e.g., literals and
functions) is similar to that of the structure-mapping theory.

GeoRep [Ferguson and Forbus, 2000] connects visual and non-visual knowledge in
a different way than Galatea. First, it takes in line drawings as inputs and outputs the
visual relations in it. Then, it takes the visual relations as input and outputs domain-
specific causal descriptions. Covlan’s visual primitives are similar to that of GeoRep.

Like Galatea, LetterSpirit is a model of analogical transfer using visual representa-
tions [McGraw and Hofstadter, 1993]. It takes a stylized seed letter as input and outputs
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an entire font that has the same style. It does this by determining what letter is presented,
determining how the components are drawn, and then drawing the same components of
other letters the same way. The analogies between letters are already in the system: the
vertical bar part of the letter d maps to the vertical bar in the letter b, for example. A
mapping is created for the input character. For example, the seed letter may be inter-
preted as an f with the cross-bar suppressed. When the system makes a lower-case t, by
analogy, it suppresses the crossbar.

Like ANALOGY, LetterSpirit transfers single transformations/attributes (e.g. crossbar-
suppressed) and therefore cannot make analogical transfer of procedures (e.g. moving
something, then resizing it) like our theory can. In contrast, one can see how Galatea
might be applied to the font domain. The stylistic guidelines in LetterSpirit, such as
“crosshar suppressed” are like the visual transformations in our theory: it would be a
transformation of removing an element from the image, where that element was the
crossbar and the image was a prototype letter f. Then the transformation could be ap-
plied to the other letters one by one. In this way our theory has more generality than
LetterSpirit, which by design only works on alphabets.

The VAMP systems are analogical mappers [Thagard et al., 1992]. VAMP.1 uses
a hierarchically organized symbol/pixel representation. It superimposes two images,
and reports which components have overlapping pixels. VAMP.2 represented images as
agents with local knowledge. Mapping is done using ACME/ARCS [Holyoak and Tha-
gard, 1997]. The radiation problem mapping was one of the examples to which VAMP.2
was applied. [Croft and Thagard, 2002] created a computational model DIVA which
does analogical mapping using ACME. What it maps are three-dimensional represen-
tations in hierarchically organized scene graphs. Things in the graph can be associated
with behaviors, so it can represent dynamic systems. This system was a mapping sys-
tem, and though it deals with the Duncker problem, it does not transfer the solution
procedure.

MAGI [Ferguson, 1994] uses the structure-mapping theory to find examples of sym-
metry and repetition in a single image. JUXTA [Ferguson and Forbus, 1998] uses MAGI
in its processing of a diagram of two parts, and a representation of the caption. It outputs
a description of what aligns with what, along with important and distracting differences.
It models how humans understand repetition diagrams.

Like Galatea, MAGI, JUXTA, and the VAMPs use visual knowledge. But unlike
Galatea their focus is on the creation of the mapping rather than on transfer of a solution
procedure. MAGI’s and our theory are compatible: a MAGI-like system might be used
to create the mappings that our theory uses to transfer knowledge. The theory behind
the VAMPs is incompatible because they use a different level of representation for the
images.

Though not an implemented computer program, the image-schema theory of Lakoff
and Johnson [Johnson, 1990; Lakoff and Johnson, 1983] says that humans use metaphors
pertaining to their bodies to reason about external situations. Our theory is similar in
that it uses perceptual abstraction to find similarity between ideas and to reason about
external ideas. Our ideas differ in that their image-schemas are multi-sensory and based
on bodily action, where our theory, though it does not exclude such representations,
focuses on visual abstractions.
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The perceptual symbol system theory [Barsalou, 1999] holds that all mental repre-
sentations are perceptual in nature, so that all reasoning operates on perceptual symbols.
On this view, what we have called the non-visual or amodal representation is actually
perceptual as well, and what we are calling the visual level of representation is a more
abstract perceptual representation.

Our theory of visual re-representation in creative analogies evolves from our earlier
work on analogical reasoning, and shares two central themes with it. The first central
theme is the development of content accounts that support analogical reasoning. The
Ideal system [Bhatta and Goel, 1997a; 1997b], for example, used structure-behavior-
function (SBF) models for supporting analogical remindings, mappings, and transfer
in the context of conceptual design. The Torque system [Griffith et al., 2000; 1994
used SBF models for analogical remindings, transfer, and evaluation in the context of
scientific problem solving. Qian and Gero[Qian and Gero, 1996] use similar Function-
Behavior-Structure models to support analogy-based design.

The second central and consistent theme is the use of abstractions to facilitate ana-
logical reasoning. In the Ideal system, for example, analogical transfer was enabled
by behavior-function abstractions of SBF models. Ideal provided a content account of
the behavior-function abstractions in the form of generic teleological mechanisms and
generic physical principles. The Torque system similarly provided a content account of
generic structural transformations and used them to facilitate analogical reasoning.

One hypothesis of the present work is that analogical transfer is a difficult part of the
analogical problem solving process — that even with the appropriate source retrieved
and the correct mapping, transfer and adaptation can prove difficult. We are currently
running a psychological experiment to test this hypothesis. Experimental participants
are given the fortress story, the tumor problem, and a mapping between them, and are
asked to solve the problem. We have a diagram group which is given abstract diagrams
of the fortress and tumor problems, and a control condition in which no diagram is
given. If our theory is correct, both conditions will have difficulty, because transfer is
difficult, but the diagram condition will have a higher rate of successful transfer of the
analogous solution.

In our future work we will expand Galatea to demonstrate how ontological problems
in non-visual representations can be aided by visual instantiation and visual reasoning.

4.1 Conclusion

The above work leads us to our main conclusions, the first pertaining to analogy and
the second to creativity. First, Galatea shows that visual knowledge alone is sufficient
for the transfer task. This is in contrast to earlier theories of analogical transfer that
rely on non-visual knowledge. Second, our theory of creative analogies says that visual
representations can be used as an intermediate representation that a reasoner can use to
find similarities between otherwise dissimilar objects.

According to [Mednick, 1962] reasoners are creative because they can make seman-
tic connections between dissimilar things. Solving the Duncker problem by transferring
the solution from the fortress problem to the tumor problem requires creativity of this
kind. Our theory shows how this might occur: by changing representations to visual
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and back again, cognitive and artificial reasoners can make connections among distant
objects, strategies, and ideas.
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